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Preface

Introduction

The Department of Mathematics, Institute of Chemical Technology, Mumbai has offered
the Multidisciplinary Minor (MDM) Programme in Machine Learning and Artificial
Intelligence under the National Education Policy (NEP 2020). This material has been
developed during the lectures of the course Statistical Computing (MAT 1501). This course
is designed to give some fundamental statistical ideas to the students so that they can grasp
deeper concepts in Machine Learning and Deep Learning courses in the upcoming semesters.
All the codes in this study material were written live in the classroom to demonstrate various
statistical concepts. Yes, you read that correctly—the codes were developed in real-time
during the sessions. Later, some refinements were made by incorporating mathematical
expressions and adding general explanations of the concepts used. Based on my experience, I
find Quarto to be an exceptionally user-friendly dynamic document generation platform that
supports multiple programming languages.

Additionally, I would like to emphasize that I have rarely used external packages for demon-
stration. Instead, I have primarily relied on basic loops and matrices to write programs. Over
time, I have observed that students often focus on memorizing package names and perceive
R/Python as magical software, treating them as black boxes. In this document, you will see
that we performed an entire regression analysis using matrix notation before later implement-
ing it with built-in functions.

This document is not intended to make you an expert in machine learning; rather, it aims to
help you grasp fundamental concepts in Data Science. My goal is for students to understand
the underlying ideas and make informed decisions when selecting appropriate algorithms in
future courses, rather than blindly following R/Python instructions. Typically, these concepts
are taught through PowerPoint presentations, visually appealing slides, or engaging talks. 1
initially considered taking a similar approach, but the students’ eagerness to explore and un-
derstand the concepts in depth inspired me to demonstrate live programming in R. Ultimately,
it was the students who guided this teaching approach, and I found that it worked quite well.
Codes are written live, therefore, they may not be efficient and I am sure that there will be
better and smarter way to write code. But, the primarily goal is to understand the statistical
ideas, not to learn programming using R.



Rationale

This course is a foundation course covering major concepts from Probability and statistical
estimation theory for the Undergraduate Engineering students. Introduced concepts will be
useful in understanding the concepts related to Data Science, Machine Learning, and Deep
Learning having wider applications in various engineering disciplines.

Prerequisites

Basic linear algebra, differential calculus, basic probability theory, knowledge of conditional
probability and Bayes theorem.
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Introduction to R Programming

A glimpse to the R Programming

To learn more about software or programming, it is essential to grasp the basic data storage fa-
cilities within the environment. R is particularly user-friendly when it comes to handling basic
data structures, requiring no prior programming experience. This article introduces vectors,
matrices, and lists in R, providing a solid foundation for using R effectively. Understanding
these data structures is crucial for performing data analysis and various programming tasks
with ease.

Installation

o Go the link: https://posit.co/download/rstudio-desktop/

< ¢ & https;/positco/download/rstudio-desktop/ Ay FE |5

== posit PRODUCTS ~  OPEN SOURCE v USE CASES v  PARTNERS v LEARN & SUPPORT v  ABOUT v Q

section.

1:Install R 2: Install RStudio

RStudio requires R 3.6.0+. Choose a version of R that
matches your computer’s operating system DOWNLOAD RSTUDIO DESKTOP FOR WINDOWS

R is not a Posit product. By clicking on the link below to

X i Size: 265.27 MB | sHA-256: seFcpiss | Version:
download and install R, you are leaving the Posit oloncad: 309419 1€

2024.12.0+467 | Released: 2024-12-16
website. Posit disclaims any obligations and all liability

with respect to R and the R website.

DOWNLOAD AND INSTALL R
I

Figure 1: Download R from the webpage and install. Then download RStudio and install in
your PC Separate instructions for Windows/Linux/Mac is provided.

¢ Open RStudio and Create a New R Script


https://posit.co/download/rstudio-desktop/

10

11

12

RStudio
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@ Rscript  CirlsShifteN
Quarto Document.. nsave | QL /-
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{2 R Notebook
© RMarkdown.
T Shiny Web App..
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Text File
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21 Python seript
%] sqLscript
Stan File
©) D3 Script
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@ RrRHML

©' R Documentation.

| (TopLevel

Console  Terminal ©  Background Jobs
R - R441 . ~

Type 'demo()’ for some demos, 'help()' for on-Tine help, or
*help.start()' for an HTML browser interface to help.

Type 'q()’ to quit R.

[workspace loaded from ~/.RData]

e
am o
.? Eras mm  Q Search

mma.cavYadeoFne

on

2136Mm
ABe T Uos o0

Figure 2:

Typical look of the RStudio environment. It may be observed that RStudio provides
a whole suits of programming options including dynamic documentations and website
design. See the other options in the dropdown menu.

Typically, the look of RStudio contains four windows which are flexible that can be stretched or
adjusted as the requirement of the user. However, the options in each pane can be customized
by following the sequence: Tools -> Global Options -> Pane Layout

Concatenation Operator c

Execute the following codes and check the output in the console. The object x basically stores
the numbers {1,2,3,4,5}. There are multiple ways to store these numbers in x.

x = c(1,2,3,4,5)
print (x)

x = c(1:5)
print(x)

x =1:5
print(x)

x =56:1
print(x)

x = c(1:4, 5)
print(x)

x = 11:20
print(x)

10
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> Console o
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Jenvironment
Hitory
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Environment
W cvawn «
8, Publishing
| foplLeve) & R Serot &
Console T Background Jobs ves =0
R - R441 - - ©) copicr e
Type 'deno()’ for some demos, 'help()’ <
‘help.start()' for an HTML browser int
Type 'a()’ to quit R.
[workspace loaded from ~/.RDatal oK Cancel Apply
Sy B Qe id-ceovYa e @ AGE B Eeb 2
= Smoke [ 2 i - L B % 1/25/2025

Figure 3: Tools -> Global Options -> Pane Layout. Tick marks the options that you want to
view. Customizing the environment is important for individual preferences.

Some basic inbuilt functions in R
The following functions will be helpful in basic operations on vectors or arrays in R. Below

the above piece of codes, you can run the following codes as a continuation of the previous
steps.

R as a calculator

In the following code snippet, we shall see that R can be used as basic calculators including
basic mathematical functions

x =3
print (x)

y=5
print(y)

z=x+ty
print(z)

u=x -y
print (u)

11



12

13

14

15

16

17

Rstudio
File Edit Code View Plots Session Buid

LA ST Got

ofle Took Help

~ Agains + &I project: (Nore) +

0 Untitiedi= =0 e

seurczonsave | Q - S | o4 Source -
1 x=c(1,2,3,4,5
2 print(x)

3 x = c:5)

4 printGo

5 x = 1:5

6 print0o

7 x=5:1

8 printGo

9 x=c(:4, 5
10 print(0

11 x = 11:20

12 printGo

14 k=1:10
15 Tlength(x)

16 sum(x)

17 mean(x)

18 print(x[2])

19 print(x[c(2,4)1)

141 | (Top Level) = R Seript +

Console  Terminal - Background Jobs =0
R - Raal. -~
Type 'demo()’ for some demos, 'help()’ for on-Tine help, or

‘help.start()' for an HTML browser interface to help.
Type 'a()’ to quit R.

[workspace Toaded from ~/.RData]

>

T B Qe id-ceevYBdoPa ~# e W Tom N

= Smoke

Figure 4: Select the code snippet that you would like to execute, then click Run or press CTRL
+ Enter. The output of the codes will be printed on the Console

v = x/y
print(v)

W = X*y
print (w)

In the following some examples are provided involving common functions:

x =2

log(x)

log(x, base = 2)
logl10(x)

exp (x)

sin(x)

cos(x)

tan(x)

Array of numbers in R

12
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x =1:10
length(x)

sum (x)

mean (x)
print(x[2])
print(x[c(2,4)])
rev(x)

cumsum (x)
prod(x)
cumprod (x)

reverse the numbers
cumulative sum

product of the numbers
cumulative product of numbers

H OH OB ®

x = c(1,2,3,4,5)

print(x)

class(x) # what type it is

length(x) # length of the array

sum (x) # sum of the numbers

x 2 # square of all numbers

sqrt (x) # square root of all the numbers
mean (x) # average of these number
cumsum(x) # cumulative sum

In the following, we see some mathematical operations of arrays.

x = 1:5

print(x)

y = 5:1

print(y)

zZ=x+Yy # element wise addition
print(z)

u=x-y # element wise subtraction
print (u)

V = X*y # element wise multiplication
print(v)

w = x/y # element wise division
print (w)

Although R provides direct addition of two sets of numbers if they are of same length or length
of one array is a multiple of another array. We can explicitly write the codes how to perform
element wise addition as given below:

13
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x =1:5 # the first array

y = 5:1 # the second array

length(x)

length(y)

length(x) == length(y) # checking equality of length

z = numeric(length = length(x)) # initialization of array

print(z)

for (i in 1:length(x)) { # for loop starts here
z[i] = x[i] + y[i]

}

print(z)

There are multiple ways to create arrays in R with specific requirements based on the problem
in hand. In the following, we show some examples.

x = 1:100

print(x)

x = seq(l, 100, by
print (x)

y = seq(1,
print (y)

z = seq(0, 1, by = 0.1) # creating a mesh for interval

print(z)

length(z)

w = seq(0, 1, length.out= 10) # understand the difference with the previous
print (w)

length(w)

1) # understand on your own

3) # difference is same

[y
o
(@}
o

<

Il

p = rep(1, 5)

print (p)

q = rep(1:5, each = b)
print(q)

Missing values are very important to deal with in real life applications. In R, the missing
values are indicated as NA. The function is.na() is used to check whether some entry in the
data vector is missing or not. We can see some examples in the following:

x = c(l, 2, 3, NA, 5)
length(x)
is.na(x)
lis.na(x)

14



mean (x) # output NA

median (x) # output NA
sum(x) # output NA
prod(x) # output NA

It is important to note that if there is some missing information in the data, basic functions
like mean (), sum() etc will not work. It will also return NA. Within the function include the
option na.rm = TRUE, which indicates that there are missing values in the data. Therefore,
the functions will compute the summary ignoring the missing values.

mean(x, na.rm = TRUE)

median(x, na.rm = TRUE)

sum(x, na.rm = TRUE)

prod(x, na.rm = TRUE)

var(x, na.rm = TRUE) # variance of the data

sd(x, na.rm = TRUE) # standard deviation of the data

Matrices in R

The matrix () function is used to create a matrix object with specific number of rows and
columns.

m=4 # number of rows

n =3 # number of columns

A = matrix(data = NA, nrow = m, ncol = n) # blank matrix

print (A) # Contains NA
(,11 [,2] [,3]

[1,] NA NA NA
[2,] NA NA NA
[3,] NA NA NA
[4,] NA NA NA

Af1,1] =
Al1,2] =
Af1,3] =
Al2,1] =
A[2,2] =
A[2,3] =

# Filling each position

D O W N

15



10

11

12

13

A[3,1] =7
A[3,2] =8
A[3,3] =9
Al4,1] = 10
Al4,2] = 11
Al4,3] = 12
print(A)

[,11 [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[(4,] 10 11 12

Run the following codes and understand the functioning of each of the functions.

nrow(A)
ncol (A)
rowSums (A)
colSums(A)
rowMeans (A)
colMeans (A)
rownames (A)
print(A)

colnames(A) = c("C1", "C2", "C3")

print(A)

Suppose that we want to add the row sums and column sums in the same matrix and create

a new one.

B = cbind(A, rowSums(A))
print(B)

[,11 [,21 [,3] [,4]
[1,] 1 2 3 6
[2,] 4 5 6 15
[3,] 7 8 9 24
[4,] 10 11 12 33

H H H OB H

#

number of rows

number of columns

sum of each row

sum of each column
average of each row
average of each column

C(IIRlI!, IIRQII’ IIRBII’ IIR4II)

# column bind

16



colnames (B)

NULL

colnames(B) [4] = "RowSum"
colnames (B)

[1] NA NA NA

C = rbind(B, colSums(B))
print (C)

<NA> <NA> <NA> RowSum

[1,] 1 2 3 6
[2,1] 4 5 6 15
[3,] 7 8 9 24
(4,1 10 11 12 33
(5,] 22 26 30 78
rownames (C)

NULL

rownames (C) [6] = "ColSum"
print(C)

<NA> <NA> <NA> RowSum

<NA> 1 2 3 6
<NA> 4 5 6 15
<NA> 7 8 9 24
<NA> 10 11 12 33
ColSum 22 26 30 78

Addition of two matrices

"RowSum"

17

# add last column name
# check column names again

# adding column sums

# add last row name



P = matrix(data = 1:9, nrow = 3, ncol = 3)
print (P)

[,11 [,2]1 [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

dim(P) # dimension of a matrix

[1]1 3 3

Q = matrix(data = 11:19, nrow = 3, ncol = 3)
print(Q)

[,11 [,2] [,3]
[1,] 11 14 17
2,1 12 15 18
(3,] 13 16 19

dim(Q)

[1]1 3 3

dim(P) == dim(Q) # checking dimension

(1] TRUE TRUE

R = matrix(data = NA, nrow = nrow(P),
ncol = ncol(P))
print (R) # blank matrix

[,11 [,2]1 [,3]
[1,] NA NA NA
[2,] NA NA NA
[3,] NA NA NA

18
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for (i in 1:nrow(P)) {
for (j in 1:ncol(P)) {
R[i,j] = P[i,j] + Q[i,j] # element wise addition
+
}

cat("The addition of the given matrices P and Q are\n", R)

The addition of the given matrices P and Q are
12 14 16 18 20 22 24 26 28

I Classroom Assignment: Matrix multiplication

e Suppose that A is m x n matrix and B is an n X k matrices of real numbers.
Write a programme to compute the product of these two matrices AB (matrix
multiplication).

e Using R write down the following to matrices

51 32 6.0 7.1 8;
E= 148 29 55 6.8 and W = 0'2
54 35 6.2 7.3 0’1

e Multiply these two matrix EW and report its dimension.
o From each column of E subtract the column means and call it centery.
e Consider the following piece of codes:
z = sample(1:1000, replace = TRUE)
print(z)
o Check the help(sample) to gain knowledge about the sample function.
e Pick out the values in z which are greater than 600.
e What are the index positions in z of the values which are greater than 6007

e Create a vector
(‘Zl - 5‘1/27 ‘ZQ - 2‘1/27 ceny ‘zn - £|1/2) )

, where z denotes the mean of the vector z = (24, 25, ..., 2,,)

o How many numbers in z are divisible by 27 (Note that the modulo operator is
denoted %%.)
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o Sort the numbers in the vector z in the order of increasing values.

e Compute the following series

5 1 3
o Zi:l Zj:l 5#]'
5 1 i3
- Zz‘:1 Zj:1 551@‘
5 i ;3
a Zi:l Zj:l E:Hj

In ecological problems, we do always deal with numeric values, there are observations which
are stored in strings as well. For example, we often collect data from different locations, and
these identified by letters A, B, C, D. From these locations, the numbers of observations are
32, 43, 20 and 12, respectively. Therefore, to store this data, we need to have two vectors, one
for locations and another for the counts. In addition, the location A and C are categorized
as Urban and location B and D are categorized as Others. Therefore, we may require logical
vector as well to store this information.

loc = c("A", "B", "C", "D") # note inverted comma for characters
count = c(32, 43, 20, 12) # numeric vector

urban = c(TRUE, FALSE, TRUE, FALSE)

print(loc)

print (count)

class(loc) # character vector
class(count) # numeric vector

class(urban) # logical vector

The function class() is a useful function to understand the type of the data and large scale
data analysis problems often compatibility of different data types need to be checked. These
three vectors are of same length equal to 5. However, they are now different objects, and we
usually want to have an Excel view of these objects in a single dataset with multiple columns.
In R, data.frame () function is used to create datasets.

data = data.frame(loc, count, urban) # create dataset

print(data)

dim(data) # dimension of data
nrow(data) # number of rows
names (data) # column names
ncol(data) # number of columns

Suppose that we have information from another two locations E and F. E and F are categorized
as urban and non-urban areas, respectively. From F the count is 29, however, from E, the
count is not available. The new information can be added to the existing data in the following
ways:
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o = (U0, UH0)

count = c(NA, 29)

urban = c(TRUE, FALSE)

new = data.frame(loc, count, urban)
data = rbind(data, new)

print(data)

# new location
# counts
# whether urban
# new data information
# adding to existing data
# print in the console

You may would like to have an Excel kind of view.

@ Rstudio = o X

File Edit Code View Plots Session Buid Debug Profle Tooks Help

© - - 0 to file/function ~ Addins ~

0 Unitiedt® data

Snowing 1o 6 of 6 entries, 3 total columns

Console  Terminal - Backoround Jobs ==

R
B 43 FALSE -
c 20 TRUE

D 12 FALSE

E NA  TRUE

F 29 FALSE

e

Tid.cavECOFa 0

NG 237pm
= e W FO® s

Figure 5: The View(data) command will generate an Excel kind of view in the R environment.
Not the presence of missing value.

There are important functions which directly helps to understand the structure of the data.

summary (data)

complete.cases(data)
!complete.cases(data)
datal, 3]

datal1,2]

datal3,]

If you wish, you can also change the names of the rows and columns. The functions rownames ()
and colnames() are used to execute this task. Execute the following pieces of codes to

understand their functionalities.

# rows without missing information
# rows with missing information
# third column of the data

# third row of the data
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colnames(data) = c("Location", "Count", "Urban")
print(data)

rownames (data) = c("R1", "R2", "R3", "R4", "R5", "R6")
print(data)

A little understanding of the matrices is helpful in statistical modelling of the real data sets
irrespective of the academic background. In the following codes, we see some operations on
matrices and also learn how to create a matrix in R. Matrices are two dimensional arrangements
of numbers and the dimension of a matrix A is 2x3, which means that the number of rows is
2 and the number of columns is 3. There is a total of six number are stored in the matrix. Let
us create this matrix using the following codes:

A = matrix(data = 1:6, nrow = 2, ncol = 3)

print(A)

Al1,] # First row of A

Al,3] # Third column of A

Al1,3] # number in the (1,3) position
dim(A) # dimension of A

nrow (A) # number of rows

ncol (A) # number of columns

rowSums (A) # sum of numbers in rows
colSums (A) # sum of numbers in columns
rowMeans (4) # average of numbers in rows
colMeans (A) # average of numbers in columns
sum(A) # addition of all numbers in A

When the rows and columns are exchanged, we say the transpose operation on the matrix.
Therefore, transpose of the matrix A, will contain the same numbers, but number of rows will
be 3 and the number of columns will be 2.

t(A)
dim(t (A))

If two matrices A and B are of the same dimension, then they can be added or subtracted
from each other. This operation is elementwise which means the (1,2) position number in
A will be added (subtracted) with the (1,2) position number in B. If C = A+B, then C[1,2]
= A[1,2]4+B[1,2]. Similar will be followed for all other entries. The following example will
demonstrate this fact:
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A matrix(data 1:6, nrow = 2, ncol 3)

B = matrix(data = 6:1, nrow = 2, ncol = 3)

C=A+8B # matrix addition
print(C)
D

pr

B

=A-B # matrix subtraction

int (D)

= A*B # element wise multiplication
print (E)
F = A/B
print (F) # element wise division

If we have two matrices A and B as follows:

A= {011 a12] . and B = [bll 512] _
Qg1 Qg2 by1 by

Then,
A+ B= [a11+b11 a12+b12].

Aoy + by a9y + boy

Ax B= |:a11 X by agp X b12:|
Ag1 X bgy gy X byy

Matrix multiplication, however, is different. Two matrices A and B of dimensions m x n and
p X ¢ can be multiplied if the number of columns in A is equal to the number of rows in B,
that is, n = p. The resulting matrix will be of order m x ¢. In R, the symbol %% is used to
perform matrix multiplication.

For example:

A%« %B = | %1 X byy 4 agg X by ayy X big + @y X byy
A9y X byy +agp X byy gy X byg + agy X gy

A = matrix(data 1:6, nrow = 3, ncol 2)
print(A)

B = matrix(data
print (B)
ncol(A) == nrow(B) # condition of multiplication
C = AJx*YB # matrix multiplication
print (C)

dim(C) # 3 by 3 matrix

1:6, nrow = 2, ncol = 3)
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A matrix is called a square matrix if the number of rows is equal to the number of columns
of the matrix. The entries in the positions (1,1),(2,2), etc. are called diagonal entries. A
matrix will diagonal entries 1 and off-diagonal entries as zero is called the identity matrix. In
the following, A is a square matrix of order 3. Using the diag() function, we can obtain the
diagonal entries.

A = matrix(data = 1:9, nrow = 3, ncol= 3)
diag(A) # diagonal elements

If A and B are two square matrices of order n, we say that B is the inverse of A (denoted by
AY if A% « %B = I = B% * %A. The inverse matrix B can be obtained by the solve()
function in R.

A = matrix(data = c¢(1,3,1,2,1,2,4,3,1), nrow = 3, ncol = 3)

print (A)

solve(A) # inverse of A
eigen(A) # eigenvalues of A
solve (A)%*%A # identity matrix

det (A) # determinant of A
rowMeans (A4) # average of each row
colMeans(A) # average of each column
colSums (A) # sum of each column
rowSums (A) # sum of each row

In above, we have seen data.frame and matrix objects in R. We observed that the matrix can
not hold data of two different types. In another words, if we have two columns, one represents
the abundance of some species (numeric) and the other represents the location of the site (in
character). We cannot store this two information in a single matrix. Even if we store them,
both the columns will be converted to character types. A small demonstration is shown below
for understanding. The variable Density is a numeric variable, however, when it is stored in
a matrix with another column Sites, the Density column is converted to character. In the
print (M), observe that all the numbers are within inverted comma.

Density = c(100, 138, 80, 20, 41) # numeric type

Sites = c("A", "B", "C", "D", "E") # character type

M = cbind(Density, Sites) # Column binding

class (M) # Matrix

class(M[,"Sites"]) # character type

class(M[, "Density"]) # character type

class(Density) # numeric type

print (M) # all within inverted comma
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Apart from the data.frame and matrix, the knowledge of the list data structure also comes
very handy in data analysis applications of R programming. You can think of list as a sequence
of big containers. In each container, you can store different types of objects. For example, if
you have a list of length 3, then in the first container, you can keep a matrix and in the second
container, you can keep a data.frame and in the third container, you can keep a vector also.

List = list(length = 3) # Empty list of length 3
D = data.frame(A = rep(c(1,2), 4), B = rnorm(n=8))

M = matrix(data = rnorm(n = 9), nrow = 3, ncol = 3)

x = 1:10

List[[1]] =D # First container
List[[2]] = M # Second container
List[[3]] = x # Third container
print(List) # print the list

Writing functions

It is important to have a basic idea of writing functions in R. Functions are often helpful to
automate some data analysis process and help in reducing time for doing repetitive tasks. For
example, I am interested in computing the average of the first and the last number of a set of
values. The following code will do this task.

x =1:10 # data values
(x[1] + x[10])/2 # average of the first and last

Suppose the above process we want to do it for 5 sets of values and each of different lengths.
Every time, we need to write this. However, if we write a function, the process can be done in
much nicer way.

a = rep(1, 5) # repeat 1 five times
b = c(5:10) # numbers 5 to 10
c = rev(10:1) #1,2,3,..,10
d =1:20 #1,2,3,..,20
f = function(x){ # function in R
(x[1] + x[length(x)]1)/2
+
f(a) # Check the return value
f (b)
f(c)
f(d)
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We can also do customization of the function. Suppose instead of numeric value someone
enters a character in the entry, then the summation will not be computed and result in error.
Inside the function body, we can add more comments.

e = C("A”, "B", ucu)
f(e) # error and read the error

You can modify the function as follows. As you can see that you can add multiple conditions
and modify the function as per your requirements.

f = function(x){ # modified function
if (!is.numeric(x) == TRUE)
return("Can not compute: the input is not numeric.")
else
return((x[1]+x[length(x)])/2)
}

f(e) # customized output

You can also write down mathematical functions. The common algebraic and trigonometric
functions are available in R. Some common functions are sin(), cos(), log(), etc. In the
following, we show an example. The curve() function is very important to understand when
dealing with mathematical functions.

par(mfrow = c(1,2))
f = function(x){
X" 2%sin(10%*x) # body of the function
}
curve(f(x), -1,1, col = "red", 1lwd = 3, cex.lab = 1.3,
main = expression(x~3*sin(10%x)))

g = function(x){
x"3

(S

h = function(x){
sin(10%*x)
}
curve(g(x), col = "red", lwd = 3, -1, 1, cex.lab = 1.3,
ylim = c(-1.2, 1.6), 1ty = 2)

curve(h(x), add = TRUE, col = "blue", lwd = 3, 1lty = 3)

legend("topleft", legend = c(expression(x~3), expression(sin(10%x))), bty = "n",
lwd = ¢(3,3), col = c("red", "blue"), 1ty = c(2,3),
cex = 0.8)
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Figure 6: The curve function can be efficiently used to plot mathematical functions in an
effective way. You can also perform mathematical annotations on the plot using the
expression() function.

The curve function contains several important arguments, main, cex.main, add, lty, lwd,
col, etc. You are encouraged to play with these options and see the changes in the plots. This
hands-on experience will increase the comfort level in handling R programming tasks. You
can add legends as well using the legend () function. The option bty = "n" specifies that we
do not want to have a bounding box about the legend. The expression() function is useful
for mathematical annotations in the plot window.

Some important functions in R

In the following, we list some common R functions which operates on the list of values in R.
We give a small example, however, the same can be applied to large data sets as well.

x = c(rep(1,3), rev(1:5))
print(x)

which.max (x)

which.min(x)

which(x == 1)

which(x != 1)

sum(x == 1)

x[x == 1]
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x[x!=1]
x[x > 1]

Run the above codes and interpret them on your own.

Symbolic computation

R also provides some options for performing symbolic computation. The operator D is used

for this computation. In the following, we perform the symbolic derivative of the function
2

Y(z) = 32% to compute ¢’ () using R. Another example is also given with ¢(z) = 12f$2. We

need to store the function within the expresion command.

par(mfrow = c(1,2))
expr = expression(2x*x/(3+x))
cat("The derivative of the function is given by \n")

The derivative of the function is given by

D(expr, 'x')

2/(3 + x) - 2% x/(3 + x)°2

diff_psi = function(x){
(2/@ + x) - 2 * x/(3 + x)72)*(x>0)
}

expr = expression( ((2*xx72)/(1+x72)))
cat("The derivative of the function is given by \n" )

The derivative of the function is given by

D(expr, 'x')

2x (2xx)/(1 +x72) - (2 *xx72) x (2 *xx)/(1 +x"2)"2
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diff_phi = function(x){
(2 *x (2 *xx)/(1 +x72) - (2 % x72) * (2 % x)/(1 + x72)72)*(x>0)
}
curve(diff_psi(x), col = "red", lwd = 3,
0.001, 10,
ylab = expression(nabla(psi(x))))
curve(diff_phi(x), col = "blue", lwd = 3,
0.001, 10, ylab = expression(nabla(phi(x))))
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Figure 7: The derivative of the functions ¢ (z) and ¢(z) for z € (0, 00).
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Introduction to Probability Distributions
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Probability mass function

Suppose that we have a fair coin and we toss it two times, then the sample space is given by
S§={HH,TH,HT,TT}

Suppose that X: § — R, defined as
X(s) = number of H in s,

therefore X € {0,1,2}. Since it is a fair coin, the following probabilities can be easily com-
puted.

We can visualize these values as a mass on the real line having masses at the values {0, 1, 2}.
Let us visualize it using R.

In the following, we first visualize the probability mass function for n = 2.

n=2 # number of throws

x = 0:n # possible values of the random variable X
print(x)

[1] 012

p=20.5 # probability of head

p_x = choose(n, x)*p~x*(1-p)~ (n-x)

print(p_x)

[1] 0.25 0.50 0.25

plot(x, p_x, pch = 19, ylab ="P(X=x)", type="h", lwd = 2,
col = "red", lty =2, main = "Binomial (n,p)")
points(x, p_x, pch = 19, col = "blue", cex = 1.5)
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Binomial (n,p)
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Figure 1: The probability mass function of the binomial probability distribution when the
coin is fair. The random variable X represents the number of heads when the coin
is tossed twice.

For n = 10, we now visualize various shapes of PMF of X for different choice of p € (0,1).
We can now generalize this situation to consider a coin with probability of head as p € (0,1).
Therefore, we are considering tossing with a biased coin as well. It is easy to compute that
(based on the classroom exercise) is that

P(X =) = (2)p(1 - p* 7w € {0,1,2),

and zero otherwise. In the following, we check various shapes of the distribution of the mass
on the real line.
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Listing 0.1 R Code: The reader is encouraged to see how the loop is written for different
choices of p.

p_vals = c(0.05, seq(0.1, 0.9, by = 0.1), 0.95) # different values of prob of head
print(p_vals)
n = 10

par (mfrow = c(2,3))
for (p in p_vals) {

x = 0:n

p_x = choose(n, x)*p~x*(1-p)~ (n-x)

print(p_x)

plot(x, p_x, pch = 19, ylab ="P(X=x)", type="h", lwd = 2,
col = "red", lty =2, main = paste("p = ", p))

points(x, p_x, pch = 19, col = "blue", cex = 1.5)

}
p= 0.05 p= 0.1 p= 0.2
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Figure 2: The shapes of the binomial PMF for different choice of the success probability p. As
p is close to 1, more number of heads is expected to occur.
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Figure 3: The shapes of the binomial PMF for different choice of the success probability p. As
p is close to 1, more number of heads is expected to occur.
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Listing 0.2 R Code: The reader is encouraged to see how the loop is written for different
choices of n.

par (mfrow = c(2,3))

p=0.7

n_vals = c(2,4,6,8,10, 12, 15,20, 25, 50, 75, 100)
print(n_vals)

for (n in n_vals) {

x = 0:n
p_x = choose(n, x)*p x*(1-p)~ (n-x)
print (p_x)
plot(x, p_x, pch = 19, ylab ="P(X=x)", type="h", lwd = 2,
col = "red", lty =2, main = paste("'n = ", n))
points(x, p_x, pch = 19, col = "blue", cex = 1.5)
}
n= 2 n= 4 n==6
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Figure 4: The shapes of the binomial PMF for different choice of n and the success probability
p is fixed.
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P(X=x)

P(X=x)

Figure 5: The shapes of the binomial PMF for different choice of n and the success probability
p is fixed.

We can compute the center of mass of these masses using the formula Y m;z;/> m,. You
can check that the center of mass is given by 2p. It can be easily verified that if the coin is
tossed thrice, then the center of mass is given by 3p. In the plot, we have added the centre of
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Listing 0.3 R Code: The students are encouraged to realize that how simple plots can be
more effective for a better understanding of the concepts. We usually compute the expectation
in a mathematical way and hardly realize its use. However, the idea of center of mass or the
average value give a better understanding of the concepts.

n=2 # number of throws
p_vals = c(0.05, seq(0.1, 0.9, by = 0.1), 0.09)
par (mfrow = c(2,3))
x = 0:n # values taken by X
for(p in p_vals){
p_x = choose(n, x)*p~x*(1-p)~ (n-x) # probability values
plot(x, p_x, pch = 19, type = "h", ylab = "P(X=x)",
cex = 1.3, col = "darkgrey", ylim = c(0,1),
lwd = 3, main = paste("p = ", p), 1lty = 2)
points(x, p_x, pch = 19, col = "red",

cex = 1.5)
CM = n*p # expected value
abline(v = CM, col = "magenta",

lwd= 2, 1ty = 2)
abline(h = 0, col = "darkgrey", lwd = 2)

}
p= 0.05 p=0.1 p= 0.2
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Figure 6: It should be noted that as the probability of head changes, the center of mass (the
expected value) also changes. For example, as p increases, the mass shifts towards
the right. When p = %, the center of mass is exactly at the point 1. The vertical
dotted magenta color line indicates the center of mass. For students, it may be
considered that the point through which the eartch is attracting the mass.
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Figure 7: It should be noted that as the probability of head changes, the center of mass (the
expected value) also changes. For example, as p increases, the mass shifts towards
the right. When p = %, the center of mass is exactly at the point 1. The vertical
dotted magenta color line indicates the center of mass. For students, it may be
considered that the point through which the eartch is attracting the mass.

I (Classroom exercises

e Find the value of a so that the following function is a PMF.

>\I
2 xe€{0,1,2,...,
gla) =4 " { : J
0, otherwise

Plot the PMF for A € {1,2,3,4,5,6}. Use the option par(mfrow = c(2,3))

e Find the value of a so that the following function is a PMF:

(z) = %, €1{0,1,2,...,100}
g 0, otherwise

e Find the value of a so that the following function is a PMF:
a(l—p)* 1, 2z € {1,2,..
g9(x) = 4= . t I
0, otherwise

Plot the PMF using R for different choices of p.
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e Find the value of a so that the following function is a PMF:

2 re€{0,1,2,...,n}, where n € N
glay = o1 2 € A0 L2
0, otherwise

Probability density function

In the above discussion, we have considered random variable that takes only a finite or
countable values on the real line. We start our discussion with a family of functions f,,(z),
m € {1,2,3,...}, which is defined as

fm() = (0.1)

ma™ 1t 0<z <1,
0, Otherwise.

In the following, we first draw a shape of these functions using the following code

Listing 0.4 R Code: The students are encouraged to see how the support of the probability
density function is given in the body of the function using the star symbol

f m = function(x){
m*x” (m-1)*(x>0) * (x<1)

}
par (mfrow = c(2,3))
m_vals = 1:6 # different values of m
for(m in m_vals){
curve(f_m(x), col = "red", lwd = 2, main = paste("'m = ", m),

xlim = ¢(-0.2, 1.1), ylim =c (0,6),
ylab = expression(f[m](x)))
points(m/(m+1), O, pch = 19, col = "blue", cex = 1.3)
}
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Figure 8: The shape of the function f,,(x) for different choices of m.

! Probability density function
A function f(x) is called a probability density function (PDF) if

o f(z) >0 for all z € (—o0, 0).
o [T fla)de=1.

Using the integrate () function, we can check whether the functions f,,(z),m € {1,2,3, ..., }
are PDF or not. Before doing it by using R, we can easily check that by using the direct
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integration as follows:

/f dq:_/ fon( dx+/ der/ fn(
:/ooo dx—l—/ maz™ 1da:+/1 0-
— x - —
_m[m]wo_l'

Using R, we can check whether the integral is 1

m=3 # change the value of m
integrate(f_m, lower = 0, upper = 1)

1 with absolute error < 1.1e-14

Some more examples

Suppose that we consider the set of functions g,,(x) for m € {1,2,..., }

2™ le™™ 0< < oo
Im (T) =

0, otherwise.

In the classroom, many students may not be knowing about the gamma () function. In such a
case, the instructor is encouraged to start with the computation of integration by hand

/ g (x)dz, for m € {1,2,3}
0

and come up with the generalization

/0°° G (x)dr = (M — 1) /OOO g 1 (x)dz = = (m —1)!

Let us now plot these functions
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Listing 0.5 R Code: It is always a better option to plot the functions whichever is discussed
during the lecture. This gives a better understanding for the students and the visual dis-
plays play a longstanding impact on the students. The students are encouraged to integrate
these functions and see whether their theoretical computation matches with the output of the

integrate() function.

g_m = function(x){

x~ (m-1) *exp (-x) * (x>0)
}
par (mfrow = c(2,3))
m_vals = 1:12
for(m in m_vals){

2, main = paste("'m = ", m),
expression(glm] (x)))

curve(g_m(x), col = "red", lwd
xlim = c(-0.2, 15), ylab
}
m=1
[o0]
g
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Figure 9: The shape of the function g,,(x) for different choices of m. It may be noted that
close to zero ™ term dominates, and for large values of x, the exponential term
dominates and the PDF is exponentially decaying to zero as x — oo.
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Figure 10: The shape of the function g,,(x) for different choices of m. It may be noted that
close to zero =" term dominates, and for large values of z, the exponential term
dominates and the PDF is exponentially decaying to zero as x — oo.

The following numerical integration output suggests that g,,(z) is PDF only for m = 1 and
m = 2. However, for m > 3, fooo 9gm(z)dx # 1. However, these functions can be converted to
the PDF by appropriately scaling them (by dividing with the total area under the curve) to
probability density functions. Consider

f (l‘): (mil)!gm(w% 0<z<oo _ %,0<$<0®
" 0, Otherwise 0, otherwise

for(m in m_vals){
print(integrate(g_m, lower = O, upper = Inf))
}

1 with absolute error < 5.7e-05
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1 with absolute error < 6.4e-06

2 with absolute error < 7.1e-05

6 with absolute error < 2.6e-06

24 with absolute error < 2.2e-05
120 with absolute error < 7.3e-05
720 with absolute error < 0.0047
5040 with absolute error < 0.35
40320 with absolute error < 0.0013
362880 with absolute error < 0.025
3628800 with absolute error < 0.34
39916800 with absolute error < 3.1

Listing 0.6 R Code: It is important to note that we did not define the function again, rather
we have passed the function g,,(x) to the body of the function f,,(z). Also note the use of
the factorial () function.

par (mfrow = c(2,3))
m _vals = 1:6 # different values of m
f m = function(x){

g_m(x)/factorial (m-1)

}
for(m in m_vals){
curve(f m(x), col = "red",
lwd = 2, main = paste("'m = ", m),

x1lim = ¢(-0.2, 15),
ylab = expression(f[m](x)))
points(m, O, pch = 19, col = "blue", cex = 1.3)
}
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Figure 11: We first integrated the function g,,(z) and the obtain f,,(x) by dividing the total
are under the function g,,(x). It should be noted that the integration is performed
in the interval (0,00) and the support of the distribution with the PDF f, (x) is
(0, 00).

Using the following R Code, we can verify that for different choices of m, the area under the
function f,,(x) is 1 in the interval (0, c0).

m_vals = 1:6
for(m in m_vals){

print(integrate(f_m, lower = O, upper = Inf))
}

1 with absolute error < 5.7e-05
1 with absolute error < 6.4e-06
1 with absolute error < 3.5e-05
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1 with absolute error < 4.4e-07
1 with absolute error < 9.3e-07
1 with absolute error < 6.1e-07

In the following, let us check whether the following function is a PDF. The function
g(z) =2%e73%,0 < x < oo,
and zero otherwise.

g = function(x){
X“2*exp(—3*x)*(0<x)
}
curve(g(x), col = "red", -1,5, lwd = 2)
integrate(g, lower = O, upper = Inf)

0.07407407 with absolute error < 4.9e-07

9(x)

0.00 0.02 0.04 0.06

Figure 12: The graph of the function g(z) and we need to check whether this function is a
PDF.

The above function is not a PDF. Can we convert this function to a PDF? Yes. If
o
/ g(x)de =M
hold, then we can obtain a PDF f(z) = < ¢g(z) is a PDF.

M
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val = integrate(g, lower = O, upper = Inf)$value
print(val)

[1] 0.07407407

f = function(x){
g(x)/val
}
curve(f(x), -1, 5, col = "blue", 1lwd = 2)
integrate(f, lower = 0, upper = Inf)

1 with absolute error < 6.6e-06

0.6

f(x)
0.4
I

0.2

0.0

Figure 13: The shape of the PDF f(z) which is obtained from the function g(x), after dividing
by the constant M, which is the area under the function g(z). Using the integrate()
function, it is verified that f(x) is indeed a PDF.

I Exercises - 1

0, z <0

1 _0<zr<o

Check whether the following functions are PDF or not. - f(x) = {
(1+4x)2>
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Let us expand the scope of this problem. Consider the following choice of g(x):
glx) =e Mzl 0 <2 < 0

and zero otherwise.

alpha = 3

lambda = 3

M = gamma(alpha)/lambda”alpha

g = function(x){
exp(-lambda*x)*x~ (alpha - 1)#*(0<x)

}

f = function(x){ # define the PDF
g(x) /M

}

par (mfrow = c(2,3))

alpha_vals = c(1,3,5) # filling up first row

lambda = 3

for (alpha in alpha_vals) {
curve(g(x), -1, 8, col = "red", lwd = 2)
legend ("topright", legend = bquote(alpha == .(alpha)),
bty = "n", cex = 1.3, lwd = 2, col = "red")

alpha = 3
lambda_vals = c(1,5,7)
for (lambda in lambda_vals) {
curve(g(x), -1, 8, col = "red", lwd = 2)
legend("topright", legend = bquote(lambda == .(lambda)),
bty = "n", cex = 1.3, lwd = 2, col = "red")

48



©
o] ©O o
o ] = o
— a=1 N a=3 i a=5
©
s 7 S S
o o
. g 2 4 = 4
> © | > SE.
S g 4
N o o
o | -
o | S_J 8
© I I I I I o I I I I I o I I I I I
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
X X X
o
—_ N_
A=1 p — A=5 T — A=7
®
<t o
S 7] . S
o
2] ! 2 _
=) oD O o Y
S - S 8 -
] o
o o
S g | S _
I I I I I o I I I I I o I I I I I
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
X X X

Figure 14: The shape of the fucntion g(z) for different choices of a and .

In the following, code, we convert the function g(z) to a PDF f(z). Students can identify that
the integral can be converted to gamma integral and

['(a)
/0 g() o

Therefore, the PDF obtained from g(x) is given by

e—kzxa—l)\a

2 0<x<oo,

fla)=q
0, otherwise

par (mfrow = c(2,3))
alpha_vals = c(1,3,5) # filling up first row
lambda = 3
for (alpha in alpha_vals) {
curve(f(x), -1, 8, col = "red", 1lwd = 2)
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legend ("topright", legend = bquote(alpha == .(alpha)),
bty = "n", cex = 1.3, lwd = 2, col = "red")

alpha = 3
lambda_vals = c(1,5,7)
for (lambda in lambda_vals) {
curve(f(x), -1, 8, col = "red", lwd = 2)
legend("topright", legend = bquote(lambda == .(lambda)),
bty = "n", cex = 1.3, lwd = 2, col = "red")

}
@Q
— = o
[{e) -]
- 1 = a=1 - o 7 oa=3 - <
X X - < . —
g < 4 & £ o
] o | o |
Sl N B B e o ™=
0 2 4 6 8 0 2 4 6 8 0
X X
- o - o
= N — = —
s o] r=1l o o 87 r=s| o 3
’ 8 g
© =T T =R D D S
0 2 4 6 8 0 2 4 6 8 0
X X

Figure 15: The shape of the probability density function f(z) which is also known as the

gamma distribution with parameters o and A.

Let us plot f and g together

par (mfrow = c(2,3))

alpha_vals = c(1,3,5) # filling up first row
lambda = 3

for (alpha in alpha_vals) {

curve(f(x), -1, 8, col = "red", lwd = 2, main = bquote(alpha == .(alpha)))

curve(g(x), add = TRUE, col = "blue", lwd = 2)
legend("topright", legend = c("f(x)", "g(x)"),
col = c("red", "blue"), lwd = c(2,2), bty = "n")
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alpha = 3
lambda_vals = c(1,5,7)
for (lambda in lambda_vals) {
curve(f(x), -1, 8, col = "red", lwd = 2,
main = bquote(lambda == .(lambda)))
curve(g(x), add = TRUE, col = "blue", lwd = 2)
legend ("topright", legend = c("f(x)", "g(x)"),

col = c("red", "blue"), lwd = c(2,2), bty = "n"

}
a=1 a=3 a=5
«Q
— = o
. ® — f(x) &1 —_— f(x) — <] — f(x)
E <+ — g(x) R - - g(¥) L o — 9(x)
n o | o |
e - T T oc T T T T 1 oc T T T T 1
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
X X X
A=1 A=5 A=7
_ 7] f(x) &1 — f(x) S 4 — f(x)
Z ¥ g(x) g ° — g(x) E S | — 9(¥)
i 8 1 8
e - S T T T T S T T
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
X X X
mu = 1
sigma = 1

f = function(x){
(1/ (sigma*sqrt (2*pi)))*exp (- (x—mu) "2/ (2*sigma~2))
}

integrate(f, lower = -Inf, upper = +Inf)

1 with absolute error < 1.6e-05

f1 = function(x){
x*f (x)
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}
integrate(f1, lower = -Inf, upper = +Inf)

1 with absolute error < 4.4e-07

f2 = function(x){
x"2*f (x)
}
integrate(f2, - Inf, +Inf)

2 with absolute error < 7.9e-07

M2 = integrate(f2, - Inf, +Inf)$value

M1 = integrate(fl, lower = -Inf, upper = +Inf)$value
M2 - M172

(1] 1

Exercises

1. Consider the following function
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Transformation of random variables

Introduction

In the Chapter Introduction to Probability Distribution, we have learnt about the ba-
sic ideas about the probability mass function and the probability density function. Suppose
that we have a random variable X with the probability density function fy(x) and we are in-
terested in obtaining the PDF of Y = ¢(X), which is a transformation of the random variable
X. To start this concept, we start with an illustrative example.

Suppose that X ~ N (0,1) and we aim to find the probability distribution of ¥ = X2. We
can think of the Y as the squared distance of the random variable X from 0. We define the
support of a random variable X as set of all points on the real line for which the PDF f(x)
is positive and denoted by the symbol X'. Therefore,

X ={zeR: fy(x)>0}.

Y is a transformation of X and we define the sample space of Y as

Y ={yeR: fy(y) >0}

In this context we have g(r) = 2%, X' = (—o00,00) and ¥ = (0,00). Before going into the
mathematical computations, let us do some simulation and try to see whether the distributions
show some commonly known patterns. From an algorithmic point of view, we do the following
steps:

e Fixm
o Simulate X, X,,..., X,, ~ N(0,1)

e Compute YV} = X7, ...V, = X2,.

e Draw the histogram using the values Y}, Y,,...,Y,,.
par (mfrow = c(1,2))

x = rnorm(n = 1000, mean = 0, sd = 1)

hist(x, probability = TRUE, breaks = 30)

y = X2

hist(y, probability

TRUE, breaks = 30)
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Figure 1: The histogram of the simulated realizations from the standard normal distribution
is shown in the left panel. The simulated values of X are squared to obtain the
realizations of Y. The distribution of realizations from the distribution of Y is
shwon in the right panel.

It can be observed that the simulated realizations from the distribution of Y is highly positively
skewed. Let us try to obtain the PDF of Y by explicit computation. We take the following
strategy:

o Compute the CDF of Y, Fy.(y),y € ¥.
o Take the derivative of Fy (y) to obtain the PDF fy (y)

Fy(y) = P(Y <y)=P(X?<y) 0.1)
= P(vy<X<vy
= 2P(0< X <./y) (even function)

e~z dx (0.4)

It is worthwhile to remember the Leibnitz rule for differentiation under the integral sign:

b(y) by)
jy/aw) Y(x, y)de = (b(y),y) b’ (y) — v (aly),y) a/(y)+/ ;yqp(x,y)dx,

a(y)

provided the required mathematical requirements on the function ¥ (z,y) is satisfied.
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The PDF of Y is given by

_y 1 9
e 22
%7 0< y < o0,

I(3)2:
and zero otherwise. The important observation is that the square of the standard normal
distribution belongs to the G(«, §) family of distributions. Let us expand this problem in a

two dimensional scenarios.

fy(y) =

During the lecture, we post the following question: Suppose that we consider the two dimen-
sional plane and call (x,,z,) plane. We have X; ~ N(0,1) and Xy, ~ N(0,1) and we are
interested to compute the probability that P (X 2+ X2< 1). Let us understand this probabil-
ity statement in a simple language: Suppose we randomly choose a point on the (z,, z,) plane,
where each coordinate is chosen randomly and independently from the N(0,1) distribution,
what is the probability that the selected point will fall within the circle of unit radius. There
are two strategies to compute this probability.

First idea is more intuitive rather than mathematically rigorous. We consider the following
steps to be performed using R

e Fixm

o Randomly select X; ~ N(0,1)

o Randomly select X, ~ N(0,1)

o Plot the point on the (x;, ;) plane and compute the squared distance Y = X? + X3

e If Y <=1, then set counter = 1, otherwise set counter = 0.

o Repeat steps - II to IV m times and compute couTnter
to the desired probability.

, which will be approximately equal

par (mfrow = c(1,2))
m = 1000
x1 = rnorm(n = m, mean = 0, sd = 1)
x2 = rnorm(n
plot(x1l, %2, pch = 19, col = "grey",

xlab = expression(x[1]), ylab = expression(x[2]))
abline(h = 0, col = "red", lwd = 2)
abline(v = 0, col = "red", lwd = 2)
y = x172 + x272
curve(sqrt(1-x~2), -1 ,1, col = "blue", lwd = 2, 1ty = 2,

m, mean = 0, sd = 1)

add = TRUE)
curve(-sqrt(1-x72), -1 ,1, col = "blue", lwd = 2, lty = 2,
add = TRUE)

cat ("Approximate probability based on m = 1000 simulated data point is ", mean(y<=1))

Approximate probability based on m = 1000 simulated data point is 0.383
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hist(y, probability = TRUE, breaks = 30)

Histogram of y
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Figure 2: The histogram of the simulated realizations of Y based on 1000 simuations of pairs
of independent standard normal random variables. The proportion of the number
of points falling in inside the unit circle gives an approximation of the probability
P(Y <1).

The above simulation scheme suggested a highly positively skewed distribution for the random
variable Y. Let us try to compute the exact PDF of Y. We have already learnt how to compute
fy(y) by computing the CDF from the definition. In this case, the following integration needs
to be carried out:

You are encouraged to perform this integration, however, we can try some alternative approach
as well. For example, we now understood that both X? and X? follows ~ G (a = %, b= 2) and
Y is nothing but sum of two independent G(-, -) distributions. We recollect the moment gener-
ating function of the G(«, ), where o and 3 are the shape and scale parameters, respectively.
The MGF is given by

M(t) = (1—Bt) -t < ;.

In addition, the expected value and variance of this distribution is a3 and a3?, respectively.
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Suppose that W, ~ G(ay, B) and Wy ~ G(ay, §) and W, W, are independent random variables
and let W = W, + W,. Then the MGF of W is can be computed as

My(t) = E(e) = B(eWii) 05)
= E(e'")E(e"2) = My, (t)Myy, (t) (independence) (0.6)
= (1—tp)" ot t< ; (0.7)

Therefore, W ~ G(ay + ay, f); in particular the addition of these two independent random
variables also belonging to the § family of distributions. Using this result, we can see that

Y=X2+X2~G(a=1,8=2).

Let us check whether the theory is matching with the simulated histograms of the Y values in
the previous figure.

par(mfrow = c(1,2))

m = 1000

x1 = rnorm(n = m, mean = 0, sd = 1)

x2 = rnorm(n 1)

plot(x1l, %2, pch = 19, col = "grey",

xlab = expression(x[1]), ylab = expression(x[2]))

abline(h = 0, col = "red", lwd = 2)

abline(v = 0, col = "red", 1lwd = 2)

m, mean = 0, sd

y =x172 + x272

hist(y, probability = TRUE, breaks = 30)

curve (dgamma(x, shape = 1, scale = 2), add = TRUE,
col = "red", lwd = 2)
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Figure 3: The histogram of the simulated realizations of Y based on 1000 simuations of pairs
of independent standard normal random variables. In addition, we observe that the
histogram is well approximated by the G(a = 1,5 = 2) PDF which basically the
exponential PDF with mean 2.

I believe, now are in a position to generalize this idea. We just extend the idea using an
important result which states that if W, ~ G(«,, #) for 1 < i < n and they are independent,
then

ZWiNQ(a1+-~-+an,ﬁ).

=1
Let us write them in a sequential manner:

o XlNN(O,l),thenYIN§<a:%,ﬁ:2>
° X17X2NN<071)7theanzX%‘I‘X%N‘g(Oé:l,ﬁ:?)

o X, X5, ..., X, ~N(0,1), then Y, =" X}~ G(a=1%3=2)

Therefore, for n € N, the PDF of Y,, is given by

e 2
fy, (y) = 25T ()
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and zero otherwise. This probability density function is celebrated as the chi-squared distri-
bution with n degrees of freedom and usually denoted as Y, ~ x2. From the properties of the
(-, ) distribution, we can easily conclude that

EY,) =n, Var(y,) = g x 22 = 2n.
Let us visualize the distribution of the Y, for different choices of n values based on m = 1000
replications.

par (mfrow = c(2,3))
n_vals = c(2,5, 10, 30, 40, 100)
for(n in n_vals){
m = 1000
sim data = matrix(data = NA, nrow = m, ncol = n)
for(j in 1:n){
sim_datal,j] = rnorm(n = m, mean = 0, sd = 1)
+
# head(sim_data)
y = numeric(length = m)
for (i in 1:m) {
y[i] = sum(sim_datal[i,]"2)
+
hist(y, probability = TRUE, main = paste('n = ", n),
breaks = 30, col = "lightgrey")
curve (dgamma(x, shape = n/2, scale = 2),
add = TRUE, col "red", lwd 2)
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Figure 4: The histogram of the simulated realizations of Y based on 1000 simuations of n
copies of independent standard normal random variables and their sum of squared
values. The Chi-squared distribution with n degrees of freeom is overlaid on the
histograms.

While these histograms are well approximated by the x2 distribution, one student noticed

that as n increases, the histograms and the PDFs are behaving similar to bell curve, that is
the normal distribution. Therefore, a natural question arises, is the 2 PDF looks like a bell
curve for large n? In addition, what will be mean and variance of this bell curve if these
distributions are well approximated by bell curve. For experiment purpose, let us draw the x2
PDF and the normal PDF with mean n and variance 2n, that is N (n,2n) for different choices
of n. The functions dgammal(), dchisq(), dnorm() suggest the uniform use of the letter d in
plotting the density function in R.

par (mfrow = c(2,3))
n_vals = c¢(2,8,10,30,50,100)
for(n in n_vals){
curve(dchisq(x, df = n), col = "red", lwd = 2,
xlim = c(n-4*sqrt(2*n) ,n+4*sqrt(2*n)), main = paste("'n = ", n),
ylab = expression(f(x)))
curve (dnorm(x, mean = n, sd = sqrt(2*n)),
add = TRUE, col = "blue", lwd = 2, 1ty = 2)
legend("topright", legend = c(expression(chi[n]~2), "N(n,2n)"),
col = c("red", "blue"), lwd = c(2,2), 1ty = c(1,2), bty = "n")
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Figure 5: The figures clearly suggest that as the degrees of freedom increases, the x2 distribu-
tions are well approximated by the normal distribution. The normal distributions
are overlaid with dotted blue color line.

For a theoretical proof of the above observations, we can prove in the class that for large n,

+2
the Moment Generating Function of % is approximately equal to ez which is the MGF of
the standard normal distribution. Since % ~ N(0,1) for large n, therefore, X ~ N(n,2n)

for large n.

It is important to plot the curves of the PDFs for different choices of the parameters.

Most surprising transformation (Probability Integral Transform)

The probability integral transform is a fundamental theorem in statistical simulation. Suppose
that we are interested in simulating random numbers from the distribution of X, whose CDF
is given by Fx(x), say. If we consider the transformation U = Fx(X), basically, the transfor-
mation function g(-) is the CDF itself F'y(:), then U ~ Uniform(0,1). This is quiet surprising
as the result is true for any random variable. Therefore, if we simulate U ~ Uniform(0, 1), then
we can obtain a realization from the distribution of X, by considering the following inverse
transformation:

X = FgH(U).

We must take caution in defining the inverse mapping Fy! of Fy. For example, if X is a
discrete random variable, then F'y(x) is a step function, therefore, the inverse can not be
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defined in usual sense. We will not discuss it further here and close this session with an
illustrative example using the exponential(1) distribution. The CDF is given by Fy(x) =
1—e2,0<2z < oo and zero for x < 0. Therefore, for Fy!(U) = —log(1 —U),0 < U < 1.
The following code is used to demonstrate the simulation of exponential(1) random variables
starting with the Uniform(0, 1) random numbers.

CDF_Exp = function(x){
(1 - exp(-x))*(x>0)
}
# curve(CDF_Exp(x), -1, 6, col = "red", lwd = 2)

par (mfrow = c(2,3))

n = 1000

x = rexp(n = n, rate = 1)

hist(x, probability = TRUE)

plot(ecdf(x), ylab = expression(F[n] (x)))

curve (CDF_Exp(x), -1, 6, col = "red", lwd = 2,
add = TRUE)

U = CDF_Exp (%)
head (U)

[1] 0.13142579 0.19010268 0.07735331 0.13824538 0.83712382 0.48945245

TRUE)
TRUE, col = "red", lwd = 2)

hist(U, probability
curve (dunif (x), add

inv_CDF_Exp = function(u){
-log(1-u)
}
U = runif(n = n)
hist (U, probability = TRUE)
x = inv_CDF_Exp (U)
plot(ecdf(x), col = "grey", ylab = expression(F[n](x)))
curve (CDF_Exp(x), -1, 6, col = "red", lwd = 2, add = TRUE)

hist(x, probability = TRUE)
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Figure 6: Top panel: We simulated observations from the Exponential(1)$ distribution using
the rexp() function. Then simulated value are transformed using F'y(-) function,
and histogram of the resulting values are drawn. It is evident that the transformed
values are indeed Uniform(0, 1) distributed. In the botton panel, we imulated from
the Uniform(0, 1) distribution and transformed them using F'x!(+) and the histogram
of the resulting values gives the confirmation of the Exponential(1) distribution.

Maximum and Minimum of Two random variables

Suppose U; and U, are two independent uniformly distributed random variables from the
interval (0,t) for ¢ > 0. We are interested to understand the sampling distribution of the
max (U;,U,) and min (U;,U,). In the following code, we simulate the sampling distribution
of these two functions. You are encouraged to simulate the sampling distributions for the
maximum and minimum of n independent and identically distribution Uniform(0,¢) random
variables. These are also called the maximum and minimum order statistics and typically
denoted as Uy, and Uy, respectively.
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t

3

U = runif(n=2, min = 0, max =t)
n = length(U)

Ul = min(U)

U2 = max(U)

print (U1)

[1] 1.964568

print (U2)

[1] 2.95591

M = 10000

Ul = numeric(length = M)
U2 = numeric(length = M)

for (i in 1:M) {
U = runif(n=2, min = 0, max =t)
U1[i] = min(U)
U2[i] = max(U)
+
f U2 = function(x){
n*k(x/t) " (m-1)*(1/t)* (0<x) * (x<t)
}

f Ul = function(x){
n*(1-x/t) ~(n-1)*(1/t) * (0<x) * (x<t)

+

par (mfrow=c(1,3))

hist(Ul, probability = TRUE, xlim = c(0,t),
breaks = 30, xlab = expression(U[1]),
main = expression(£f[U[(1)]1](ul1])))

curve(f U1, add = TRUE, col = "red", lwd = 2)

hist (U2, probability = TRUE, xlim = c(0,t),
breaks = 30, xlab = expression(U[2]),
main = expression(f[U[(2)]1](ul2])))

curve(f U2, add = TRUE, col = "red", lwd = 2)

library(gplots)
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Attaching package: 'gplots'

The following object is masked from 'package:stats':

lowess

hist2d (U1, U2, col = c("green", heat.colors(12)),
xlab = expression(U[(1)]), ylab = expression(U[(2)]))

Call: hist2d(x = U1, y = U2, col = c("green", heat.colors(12)), xlab = expression(U[(1)]),
ylab = expression(U[(2)]))

Number of data points: 10000
Number of grid bins: 200 x 200

X range: ( 0.0002043291 , 2.991646 )
Y range: ( 0.03813706 , 2.999945 )

65



fU(l)(ul) fU(z)(uZ)

S
© _M ﬁ
© \ 8 -1 ‘ ITs)
1 / N
v | \ il
° i 3 7 f
\T I o
< I / X
S 7] \ < N
3 \ 5 ° f o
g 2+ E\ g @ Tl S
N /
N o~ Q
o o ] —
S S 10
o _| S
o o
B B
00 10 20 30 00 10 20 3.0 0.5 1.5 2.5
Uz U, U

Figure 7: The sampling distributions of the maximum and minimum of two independent uni-
formly distributed random variables from the interval (0,t). The joint distribution
of these two functions of Uniform(0,t) ranom variables are shown at the right most
panel.

You are encouraged to execute the following code to understand that the how different is the
two dimensional histogram of (U(l), U(Q)) than the histogram of random numbers simulated
from the joint distribution of (U, U,)

# IID Uniform(O,t)

Ul = runif(n = M, min = 0, max = t)

U2 = runif(n = M, min = 0, max = t)

hist2d (U1, U2, col = c("green", heat.colors(12)),
xlab = "U1", ylab = "U2")
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Sampling distributions and Convergence ideas

Understanding sampling

In a typical statistics classroom, the teacher often begins by discussing either a coin-tossing
experiment or by collecting data randomly from a normally distributed population, with the
goal of estimating the probability of success or the population mean, respectively. In both
cases, no actual statistical sampling occurs; instead, students are asked to imagine a hypo-
thetical experiment carried out by the teacher, calculating the sample proportion or sample
mean based on imagined sample data. Consequently, students often miss the actual connec-
tion between fixed sample values (obtained once data is collected) and theoretical probability
density functions (which are purely mathematical constructs).

This gap in understanding could be greatly reduced if real-time random experiments were
conducted in the classroom, similar to experiments in Physics, Chemistry, Biology, or En-
gineering courses. By utilizing software that can simulate various probability distributions,
we can bridge this gap and enhance comprehension. This chapter is developed to facilitate
an understanding of randomness in various computations based on sample data using com-
puter simulations. Concepts that are often only intuitively grasped can, through simulated
experiments, be transformed into concrete understanding. This document contains several
R codes developed during the lectures on Statistical Computing for students enrolled in the
Multidisciplinary Minor Degree Programme in Machine Learning and Artificial Intelligence,
offered by the Department of Mathematics, Institute of Chemical Technology, Mumbai, under
the umbrella of the National Education Policy NEP 2020. I extend my heartfelt thanks to all
the students for their excellent support during the lectures and for inspiring me to simulate
theoretical concepts for practical illustration.

Writing the first Computer simulation

If we set up a simulation experiment, the first task is to assume the population distribution.
In this case, we start our discussion with the normal distribution and we use the symbol f(-)
to represent the population PDF or PMF throughout this chapter. Suppose that we consider
problem of estimating the mean of the population distribution N (u,o?).
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mu = 3 # population mean
sigma = 1 # population standard deviation
f = function(x){
dnorm(x, mean = mu, sd = sigma)
}
curve(f(x), col = "red", lwd = 2, -3, 9)

f(x)

00 0.1 0.2 03 04

Figure 1: The population probability density function. For simulation study, we consider the
population distribution characterized by the normal distribution with mean pu = 3
and variance 02 = 1

Step - |

¢ Fix the sample size n

e Draw a random sample of size n from the population PDF

e Draw the sample multiple times for different choices of n and also draw the histogram
for each sample data.

¢ Overlay the population density function on the histograms to show that the histograms
are actually acting as a good approximation of the theoretical PDF.

In practice while teaching, the drawing of the histogram of the sampled data has been a very
effective way to bridge the connection between the theoretical PDF and the sample.

n = 50 # sample size
x = rnorm(n = n, mean = mu, sd = sigma)
print(x)
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[1] 3.045711 2.175084 2.005294 3.448046 3.132728 3.223940 3.835518 2.588221
[9] 2.925667 4.478519 3.024026 2.434604 3.158217 3.853893 3.242717 3.353689
[17] 1.489799 2.569764 3.780934 1.087869 5.555160 3.269059 4.556536 1.389750
[25] 3.398520 2.077598 3.728611 2.131878 3.392468 1.269570 3.916995 5.209538
[33] 1.458062 3.250667 2.734397 2.234266 4.074366 3.279568 3.523204 2.210733
[41] 2.659411 2.941551 3.067508 3.746852 5.031223 1.753011 2.320144 1.974013
[49] 2.355845 2.549186
1 hist(x, probability = TRUE)
2 curve(f(x), add= TRUE, col = "red", lwd = 2)
Histogram of x
S Ve
o
2 ™)
2 N / N
o \
(@] N
o /
N

0.0
I

Figure 2: The histogram of the simulated data is presented and the population PDF N (3,1) is
overlaid on this. Students are encouraged to execute the following codes for different
sample sizes and check out various shapes of the histograms. In addition, you can
experiment with the breaks = option in the hist function.

Step - 1l

+ Compute Sample mean X,, = = Z?:I X, and also sample variance 52 = —- Z:.L:l (X, — X
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sample_mean = mean(x)
sample_var = var(x)
cat("The sample mean and variance are\n")

The sample mean and variance are

print (sample_mean)

[1] 2.998279

print (sample_var)

[1] 1.01009

Step - I

Invariably, the sample mean will keep on changing as we execute the step - I and step - II
multiple times as different run will give different set of random samples. To understand the
sampling distribution of the sample mean, we repeat the above process m = 1000 times and
approximate the actual probability density of the sample mean by using histograms.

m = 1000
sample_mean = numeric(length = m)
for(i in 1:m){
x = rnorm(n = n, mean = mu, sd = sigma)
sample_mean[i] = mean(x)
}
hist(sample_mean, probability = TRUE, main = paste("n = ",n),
xlab = expression(bar(X[n])))
points(mu, O, pch = 19, col = "red", lwd = 2, cex = 1.3)
points(mean(sample_mean), 0, col = "blue", lwd = 2, cex = 1.5)

cat("The average of the 1000 many sample mean values is \n")

The average of the 1000 many sample mean values is
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1 print(mean(sample_mean))

[1] 2.998659

n= 50
o _|
AN
P
= B
[
(]
] o |
—
o ] 1
— @
© | | T | |

26 28 30 32 34

Xn

Figure 3: The sampling distribution of X,, approximated by histogram based on m = 1000
replications. The population distribution is governed by N (3,1). Students are en-
couraged to modify the variables m and n and see the resulting histograms. Check
that all the histograms look bell shaped.

1 Sampling distribution of X,

In the above simulation experiment, what are your observations if you perform the fol-
lowing:

o Fix m, how the shapes of histogram change as n increases. (Keep an on the z-axis
of the histogram)

e Fix n. How the shapes of the histogram changes if m is small and m is large.

e Does the bell shaped pattern changes if you change y and o?
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Step - IV

Let us do this experiment for different sample sizes and see how the distribution behaves.

Our theory suggested that E(X,,) = u, that is, the sample mean is an unbiased estimator of
population mean and the expected value does not depend on n.

par (mfrow = c(1,3))
m = 1000
n_vals = c(3,10,25)

for(n in n_vals){
sample_mean =
for(i in 1:m){

numeric(length = m)

x = rnorm(n = n, mean = mu, sd = sigma)
sample_mean[i] = mean(x)
+
hist(sample_mean, probability = TRUE, main
xlim = c(1,5))
points(mu, O, pch = 19, col = "red", lwd =
points(mean(sample_mean), 0, col = "blue",
cex = 1.5)
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Figure 4: The sampling distribution of the sample mean for differnt choices of n. The popula-
tion distribution is considered as the normal distribution with mean 3 and variance
1. It is important to note the average of the simulated sample mean values (blue
colour dot) coincides with the true mean of the population (marked as red coloured
dot).

1 Expectation is equivalent to averaging using simulation

In the simulation (Step - IV), the true population mean is indicated using the red dot
and the average of the sample means based on 1000 replication is shown using blue circle.
The averaging of the sample mean values can be thought of as an expected value of X,
that is, E (X7,L) This simulation gives an idea that E (X7n) is equal to the true population
mean g (here it is 1). Although not a mathematical proof, but such simulation outcomes
gives an indication of the unbiasedness of the sample mean.

Step - V

In theory, we have computed by using Moment Generating Functions that
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Let us check whether the theoretical claim can be verified by using simulation.

par (mfrow = c(2,3))

n_vals = c(3, 10, 25, 50, 100, 250)
m = 1000

for(n in n_vals){

sample_mean = numeric(length = m)

for(i in 1:m){
x = rnorm(n = n, mean = mu, sd = sigma)
sample_mean[i] = mean(x)

+

hist(sample_mean, probability = TRUE, main = paste("n = ", n))
points(mu, O, pch = 19, col = "red", lwd = 2, cex = 1.3)
points(mean(sample_mean), 0, col = "blue", lwd = 2,

cex = 1.5)
curve(dnorm(x, mean = mu, sd = sqrt(sigma~2/n)),
add = TRUE, col = "red", lwd = 2)

n=3 n= 10 n= 25
g 3 2 o 2 o
c o c o c —
[} [} [}
o o o o o o
o o o
1.0 20 3.0 40 2.0 3.0 4.0 25 3.0 35
sample_mean sample_mean sample_mean
n= 50 n= 100 n= 250
o
™ ©
2 2 2
£ 5 N 2 o
c - c c
3 3 g o
g © o
2.6 3.0 3.4 27 29 31 33 2.8 3.0 3.2
sample_mean sample_mean sample_mean

Figure 5: The theoretical PDF of the X, is overlaid on the histograms. The histograms are
obtained based on 1000 replications for different sample sizes. For simulation pur-
pose, the population parmaeters have been fixed at p = 3 and 02 = 1.

A natural question asked by the students was that how we were actually writing E(X;) = p
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and Var(X;) = 2. In fact, the question is much deeper which states that what do we really
mean by writing X, X, ..., X,, are independent and identically distributed random variables
each having the same population distribution.

X17X27 ves ’X’I'L ~ N(M, 02)

From a simulation perspective, if we want to check whether X, follows the same population
distribution, we need to repeat the sampling m = 1000 times (say) and from each sample of
size n, we record the first entry, which is a realization of X;.

In the following, we do this process for n = 3. Let us write down the steps in algorithmic

way:

o Fix n (sample size)
e Fix M (number of replications)
o For each m e {1,2..., M}

— Simulate Xgm),Xém),Xém) ~ N(u,o?)
(m) M
e Draw histograms of {Xj } » for j € {1,2,3}.

e Overlay V (u,0?) on each histogram.
e All three histograms matches closely approximate the population distribution.

n=3

M = 1000

mu = 3; sigma = 1

x1_vals = numeric(length = M)
x2_vals = numeric(length = M)
x3_vals = numeric(length = M)

for(i in 1:M){
x = rnorm(n = n, mean = mu, sd = sigma)
x1 vals[i] = x[1]
x2_vals[i] = x[2]
x3_vals[i] = x[3]

}

par (mfrow = c(1,3))

hist(x1l_vals, probability = TRUE, xlab = expression(X[1]),
main = paste("'n = ", n))

curve(dnorm(x, mean = mu, sd = sigma), add = TRUE,

col = "red", lwd = 2)

hist(x2_vals, probability = TRUE, xlab = expression(X[2]),
main = paste("n = ", n))

curve(dnorm(x, mean = mu, sd = sigma), add = TRUE,
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21 col = "red", lwd = 2)
22 hist(x3_vals, probability = TRUE, xlab = expression(X[3]),

23 main = paste("n = ", n))
24 curve(dnorm(x, mean = mu, sd = sigma), add = TRUE,
25 col = "red", lwd = 2)
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Figure 6: The histogram obtained from the realizations of X, is well approximated by the
population PDF. This is same for the X, and X;. In addition, you can draw a
pairwise scatterplot of these values to check that correlations among them are very

close to zero.

Convergence in Probability

Suppose that {X,} be a sequence of random variables defined on some probability space
(8,B,P) and X be another random variable defined on the same probability space. We say

P
that the sequence {X,} converges to X in probability, denoted as X,, — X, if for any € > 0
(however small), the following condition holds

lim P(|X, — X| >¢)=0.

n—oo

Basically for every X, , we construct a sequence of real numbers (a,,) obtained by

a, =P (X, — X| >e):// fx x (@, z)dz,d.
{$n7$)3 ‘mnix‘ze}
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If lim,,_,  a, =0, then the sequence of random variables {X,,} converges to X in probability.
Let us consider a simple example.

Suppose {X,, } be a sequence of independent random variables having Uniform(0, 6),6 € (0, 00)
distribution. Consider the following sequence of random variables

YTL - ma.X(Xl,XQ, e 7XTL)

which is also known as the maximum order statistics. We show that Y, — 6 in probability.
First of all, we compute the sampling distribution of Y,,. We first find the CDF of Y, and by
differentiating the CDF, we can obtain the PDF fy (y).

s
=
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By differentiating the CDF, we obtain the PDF as

y n—1 1
=n|(= —,0<y<0,
fYn (y)=n <0> 0 )
and zero, otherwise. Before going to the mathematical proof, let us consider the following
simulation exercises. In the following we obtain the sampling distribution of Y, based on

computer simulation using the following algorithm:

e« Fix n.

e Fix 6.

e Fix m, the number of replications

o Simulate X, X,,... X,, ~ Uniform(0, 6)

o Compute Y, = max(X;, X,, ..., X))

¢ Repeat the previous two steps m times to obtain Y,w, ,Y,Em.

e Draw the histogram of the values {Y,@}T x
J:
¢ Overlay the exact PDF fy (y) on the histogram.

In the above step, at each step j € {1,2,...,m} we fix set.seed(j), so that the figures are
reproducible. In the following codes, we do the same experiment for minimum order statistics
as well which is given by

Y, = min(X, X, ..., X,,).
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theta = 1

n = 10
x = runif(n = n, min = 0, max = theta)
# print(x)

print (max(x))

[1] 0.9239462

m = 1000
y_1 = numeric(length = m)
y_n = numeric(length
for(i in 1:m){
set.seed (i)
x = runif(n = n, min = 0, max = theta)
y_1[i] = min(x)
y_nli]l = max(x)

]
8
~

}
par (mfrow = c(1,2))
hist(y_1, probability = TRUE, main = paste("n = ", n),

xlab = expression(Y[1]), breaks = 30)
curve (n*x(1-x/theta) " (n-1)*(1/theta), add= TRUE, col = "red",
lud = 2)
hist(y_n, probability = TRUE, main = paste("'n = ", n),
xlab = expression(Y[n]), breaks = 30)
curve (n*(x/theta) ~(n-1) *(1/theta),
add = TRUE, col = "red", lwd = 2)
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Figure 7: We simulate the sampling distribution of the maximum and minimum order statis-
tics. Y, and Y;. The sampling distribution of Y,, is more concentrated towards 6,
and Y] is more concentrated towards 0. The exact distribution is overlaid on the
histograms obtained from simulation studies and the simulation agrees with the the-
oretical claim.

The exact sampling distribution of the minimum order statistics Y; can be derived in a similar
fashion. First, we compute the CDF of Y.

Fy(y) = P(Y;<y)=1-P(Y; >y) (0.5)
= 1—P(min(X1,X2,...,Xn)>y) (0.6)
= 1-P(X,>y,.... X, >v) (0.7)
= 1_ﬁP(XZ->y)=1—(1—P(X1Sy))”zl—(1—g)n,0<y<e.(o.8)

=1
The PDF of Y] is given by

n(l—%)n_lé, O<y<¥b
fyl( ) = .
0, Otherwise.

79



10

11

12

13

An alternative visualization

In the above explanation, we have fixed the sample size n and simulated the observations
from the sampling distribution of Y; and Y,,. The process is repeated 1000 times and check
whether the resulting histograms are well approximated by the theoretically derived PDFs. In
the following, we vary n € {1,2,3...} and for each n, we simulate a random sample of size n
and compute Y; and Y,,. Therefore, in this scheme, we do not have any replications. We plot
the sequences {Yl(l),Yl(z), ...} and {Yél),Yéz), ...} values against n € {1,2,3...}. This will give
an idea, as sample size increases, whether these random quantities converge to some particular
values.

n_vals = 1:100
y_1 = numeric(length
y_n = numeric(length
for(n in n_vals){
x = runif(n = n, min = 0, max = theta)
y_1[n] = min(x)
y_n[n] = max(x)

length(n_vals))
length(n_vals))

}
plot(n_vals, y_n, type = "p", col = "red", 1lwd = 2,
xlab = "sample size (n)", ylim = c(0,1), ylab =" ")
lines(n_vals, y_1, col = "blue", type = "p", lwd = 2)
legend(50, 0.5, legend = c(expression(Y[1]), expression(Y[nl)),
col = c("blue", "red"), bty = "n", 1lwd =c(2,2))
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sample size (n)

Figure 8: Random sample of size n is simulated from the uniform distribution from
Uniform(0,60). 6 = 1 is assumed for simulation. Simulated realization of the
minimum and maximum order statistics are shown in the graph. It is observed
Y, = max(X,,...,X,,) » 1 and Y] = min(X,,...,X,) — 0 as n — oo.

n

Central Limit Theorem

The Central Limit Theorem is one of the most fundamental concepts in Statistics which has
profound applications across all domains of Data Science and Machine Learning. It says that
the sample mean is approximately normally distributed for large sample size n. However, we
shall see it more critically and what are the assumptions needed to understand it in a better
way. We shall see some mathematical proof and a lots of simulation to understand this idea
better. To understand CLT, first we understand the concept of the convergence in distribution.
We elaborate it using a couple of motivating examples along with visualization using R.

Convergence in Distribution

Suppose that X, X, ..., X,, be a sequence of random variables follows Uniform(0, #) distribu-
tion, where 6 € (0,00) = © (say). Suppose that Y, be the maximum order statistics whose
CDF is given by

0, —oo <z <0,
F,(z)=P(Y, <z)=1(5)",0<z <0,
1, 0 <z <oo.
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We are interested to know as n — oo, how the function F), (x) behaves at each value of z. If
is easy to observe that

o If <0, limn — ocoF, (z)=0.

o If 0 <z <6, then lim, ,  F,(z)=0.
o If § <z < oo, then lim, ,  F,(x)=1.

Therefore, the limiting CDF is given by the following function which represents the CDF of a
random variable X which takes the value 6 with probability 1.

Fy(x) =

1,0 <z <o
0,—oc0 <z <.

In the following, we see visualize the convergence graphically. It is important to note that each
F,(x) is a continuous function for n € {1,2,3...}, however the limiting CDF is not continuous
at © = 0. We say that the maximum order statistics Y, = max(X;, X,,..., X,,) converges in
distribution to the random variable X.

theta = 2
n=1
F n = function(x){
(x/theta) "n* (0<=x) * (x<theta) + (theta<=x)
}
curve(F_n(x), col = 2, 1ty = 2, lwd = 2, -0.5, 2.5,
ylab = expression(F[n](x)))
n_vals = c(3,5,10,25)
for(n in n_vals){
curve(F_n(x), col = n, 1ty = 2, lwd = 2, add = TRUE)
}
points(0, O, pch = 19, col = "red", cex = 1.3)
points(theta, 1, pch = 19, col = "red", cex = 1.3)

segments(-05,0, theta,0, col = "blue", lwd = 3)

segments(theta,1, 2.5,1, col = "blue", lwd = 3)

legend("topleft", legend = c("'n = 1", "n = 3", "n = 5", "n = 10", "n = 25"),
col= c(2,3,5,10,25), bty = "n", lwd = 2, 1ty = rep(2,5))
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Figure 9: As the sample size increases, the function F,, () converges to the function Fy(x) at
all points = except 0. However, note that the point x = 0, is a point of discontinuity.

In the light of the above example, let us formalize the concept of the convergence in distribu-

tion.

| Convergence in Distribution

A sequence of random variables X, defined on some probability space (8,23,P) with
CDF F,(z) is said to converge to distribution to another random variable X having
CDF F(x), if the following holds

lim F, (x) = Fx(x)

n—o0

at all points = where the function Fy(z) is continuous.

An important point to be noted here that for checking the convergence in distribution, we
need to check on the convergence at all the points where the function Fy(z) is continuous.

Let us now see another example of the convergence in distribution. Suppose that
. 1
X,, ~ v/n x Uniform (0, — | .
n

Let U,, ~ Uniform (0, 1) and then X,, = /n x U,.

e U, shrinks towards 0 as n — oco.
o It is being amplified again by multiplying /n.
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Therefore, X,, is basically a product of two components, one is exploding as n — oo and
another component is shrinking as n — oco.

o Let us investigate the U,, component as follows through some visualization. The CDF
and PDF of U,, is given by

0, otherwise

1
fU (x):{n,0<x<;

0,—c0<z<0
Fy (x) = nl’,0§1‘<%

1Li<z<oo

par (mfrow = c(1,2))
n=1
f n = function(x){
n*x (0<x) * (x<1/n)
+
curve(f_n(x), 0, 1, lwd = 2, col = n, ylim = c(0,11),
1ty = 2, ylab = expression(f[n](x)))
n_vals = c(3,5,8,10)
for(n in n_vals){
curve(f_n(x), add = TRUE, lwd = 2, col = n, 1ty = 2)
}
legend("topright", legend = c("'n = 1", "n = 3", "n = 5", "n = 8", "n = 10"),
col= c(1,n_vals), bty = "n", lwd = 2, 1ty = rep(2,5))

F_n = function(x){
nxx* (0<x) *(x<1/n) + (1/n<=x)
}
n=1
curve(F_n(x), lwd = 2, col = n, -0.1, 1.1,
1ty = 2, ylab = expression(F[n](x)))
n_vals = c(3,5,8,10)
for(n in n_vals){
curve(F_n(x), add = TRUE, lwd = 2, col = n, 1ty = 2)
}
legend ("bottomright", legend c("n =1", "n =3", "n=5", "n=8", "n=10"),
col= c(1,n_vals), bty = "n", lwd = 2, 1ty = rep(2,5))
segments(-0.1,0, 0,0, col = "blue", lwd = 3)
segments(0,1, 1.5,1, col = "blue", lwd = 3)
points(0,1, pch = 19, col = "blue", cex = 1.2)
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Figure 10: As n — oo, f,,(x) becomes highly concentrated at 0 and F),(z) approaches to the
CDF of a random variable X which takes 0 with probability 1.

Therefore, U,, converges in distribution to 0 and we are now ready to check that if we multiply
Vv/n with U,,, will it still go to zero? In the following let us consider the simulation of U,, for
different values of n and also compute X, and see how these simulated numbers behave as
n — 00.

n = 1000
U_n = numeric(length = n)
for(i in 1:n){
U n[i] = runif(n = 1, min =0, max = 1/i)
}
plot(l:n, U_n, xlab = "n", type = "1", col = "blue",
lwd = 2, ylab =" ")
X_n = numeric(length = n)
for(i in 1:n){
X_n[i] = sqrt(i)*U_n[i]
}
lines(1:n, X_n, col = "red", lwd = 2)
legend ("topright", legend = c(expression(U[n]), expression(X[n])),
col = c("blue", "red"), lwd = c(2,2), bty = "n")
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Figure 11: Simulations suggest that both U,, and X, converges to 0, but converges of X, to 0
is slower. Convergence of U,, and X,, are shown in blue and red colour only.

We can expand the scope of this problem by expanding the definition of X,, as follows:
X, =n°U,,5§ > 0.

In the following, we choose different values of 0 and see how to simulations behave. The
following simulations suggest that

e 0<d <1, X, — 0in probability and distribution as well.
e 0 =1, X,, = Uniform(0,1) as n — oo.
e 6 >1, X, does not converges as n — oo.

delta_vals = c(0.1, 0.3, 0.5, 0.8, 1, 1.2)
par (mfrow = c(2,3))
for(delta in delta_vals){
n = 1000
U_n = numeric(length
for(i in 1:n){
Un[i] = runif(n = 1, min =0, max = 1/1i)
}
X_n = numeric(length
for(i in 1:n){
X_n[i] = i~delta*U_n[i]
}

n)

n)
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plot(1:n, X_n, xlab = "n", ylab = "",
type = "1", col = "red", main = bquote(delta == .(delta)),
ylim = c(0,1))
lines(1:n, U_n, col = "blue", pch = 19, lwd = 2)
legend("topright", legend = c(expression(U[n]), expression(X[n])),
col = c("red", "blue"), 1lwd = c(2,2),
bty = "n")
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Figure 12: The convergence of X,, is shown for different choices of § values. As ¢ increases
(but less than 1), the rate of convergence to 0 is slower. At § = 1, it converges to
Uniform(0, 1) and for 6 > 1, the sequence diverges.

We have learnt two different convergence concepts: Convergence in probability and the con-
vergence in distribution. In notation they are denoted as

P d
X, —X, X, =X
The following results hold:

P d
o If X,, = X, then X,, — X. The converse of the statement is not true in general.
P
However, if X, — X and X is a degenerate random variable (that is a constant), then

X, L X as well.
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cIfX, 5 XandY, 5 Y, then X, +Y, 5 X +Y.
o If X, 5 X and a is a real number, then a X, i aX.

P
o If (a,) be a sequence of real numbers with a,, — a as n — oo and X,, — X, then

P
a, X, —aX.

Insight into the Central Limit Theorem

Suppose that we have a random sample of size n from the population distribution whose
PDF of PMF is given by f(x). In addition, assume that the population has finite variance
0% < 0o. Let u = E(X) be the population mean. We denoted the sample mean using the
symbol X, = % Z?:l X,. Due to the WLLN, we have observed that X,, — u in probability as
n — o0o. It is to be noted that for every n > 1, X, is a random variable and depending on the
problem, its exact probability distribution may be computed. For example, if X;, X5,..., X

n

be a random sample of size n from the normal distribution with mean p and variance o2,

then
I ()'2
X, ~N (u,) , foralln > 1.
n

One can show that the MGF of X, is given by

o2
Mx—(t) = ett+2%t —00 < t < o0.

n

which establishes the result by the uniqueness of the MGF.

Now can we generalize this result for any population distribution with finite variance? In
particular, can for large sample size n, the sampling distribution of X, be approximated by
some normal distribution? If so, what will be the mean and variance of the approximating
normal distribution?

Before going to provide an exact answer of the above questions, let us perform some computer
simulations and see how the sampling distribution of the sample mean behaves for large sample
size n and for different population distributions.

Experiment with exponential

In the following code, we repeatedly simulate a sample of size n from the exponential distri-
bution with rate A, which is given by

Xe ™0 <2< oo
xTr) =
Ix(@) {0, otherwise
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The distribution is positively skewed and does not have any apparent connection with the

normal distribution. We implement the following algorithm:

o Fix sample size n
¢ Fix the population parameter A
¢ Fix the number of replication m

o Simulate X, X,,..., X, id Exponential(\)

o Compute the Sample mean X,
—m
¢ Repeat the previous two steps m times to obtain m realizations {X,(lﬁ}
— J=1
distribution of X,,.
m

¢ Plot the histogram of {Xﬁf )} values
=1
e Overlay NV (%, ﬁ) to the histogram.

o Repeat the above exercises for different (in increasing order) of sample size n.

lambda = 2
n_vals = ¢(3,5,10,25,50,100)
rep = 1000

par(mfrow = c(2,3))
for(n in n_vals){
sample_mean = numeric(length = rep)
for(i in 1:rep){
x = rexp(n = n, rate = lambda)
sample_mean[i] = mean(x)
}
hist(sample_mean, probability = TRUE, breaks = 30,
xlab = expression(bar(x)), main = paste("n = ", n))
curve (dnorm(x, mean = 1/lambda, sd = sqrt(1/(lambda~2+*n))),
add = TRUE, col = "red", lwd =2)
curve(dgamma(x, shape = n, rate = lambda*n),
col = "blue", lwd = 3, 1ty = 2, add = TRUE)
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Figure 13: As the sample size increases, the sampling distribution of the sample mean can be
well approximated by the normal distribution with mean % and variance ﬁ The
histograms are obtained based on 1000 replications from the expoenential distribu-

tion with rate A = 2.

In this simulation study we are lucky that the exact sampling distribution of the sample mean

X,, can be derived using the MGF. The sampling distribution is given by

n,—nAx n—1
{W,O <r <o

0, otherwise

Experiment with Poisson

We repeat the above simulation exercise for the Poisson distribution with rate .

resulting histograms we overlay the normal distribution with mean A\ and variance

lambda = 2

par (mfrow = c(2,3))

n_vals = c(3, 5, 10, 25, 50, 100)

rep = 1000

for(n in n_vals){
sample_mean = numeric(length = rep)
for(i in 1:rep){
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x = rpois(n = n, lambda = lambda)

sample_mean[i] = mean(x)

10

11

12

13

14

}

hist(sample_mean, probability = TRUE, breaks =30,

xlab = expression(bar(x)), main = paste("n = ", n))

curve (dnorm(x, mean = lambda, sd = sqrt(lambda/n)),

add = TRUE, col = "red", lwd =2)
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Figure 14: As the sample size increases, the sampling distribution of the sample mean can be
A Th
2, e

well approximated by the normal distribution with mean A and variance £
histograms are obtained based on 1000 replications from the Poisson distribution

with rate A = 2.

A natural question arises that whether for all probability distributions, the Central Limit
Theorem holds. The answer is negative. Let us have a simulation experiment using the

standard Cauchy distribution which is given by

1

f(x):m,—oo<x<oo.
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Experiment with the Cauchy distribution

par (mfrow = c(1,3))
curve(dcauchy(x), -5, 5, col = "red", lwd = 2)

curve (dnorm(x), add = TRUE, col = "blue", lwd = 2)

n_vals = 1:1000
sample_mean = numeric(length = length(n_vals))
for(n in n_vals){

sample_mean[n] = mean(rcauchy(n = n))

}

plot(n_vals, sample_mean, col = "red", lwd = 2,
type = "1", xlab = "sample size (n)")

n = 500

M = 1000

sample_mean = numeric(length = M)
for(i in 1:M){
sample_mean[i] = mean(rcauchy(n = n))
}
hist(sample_mean, probability = TRUE,
main = paste("n = ", n))
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Figure 15: As sample size increases, the sample mean does not converge to u, the location
parameter. Also, for large enough n, the sampling distribution of the sample mean
does not converge to a normal distribution. Therefore, for the Cauchy distribution,
the WLLN and CLT both do not hold.

I WLLN and CLT: Points to Remember

Based on our discussion, we conclude the following:

e If the population has finite mean, then WLLN holds

o If the population has finite variance, then CLT holds.

 If the population has finite mean, but the second order moment does not exits, then
WLLN will hold but CLT will not hold.

e If the population has finite variance, then both WLLN and CLT hold true.

A further generalization of the CLT led us investigate the sampling distribution of the function
of sample mean, g (X,,) for some function g(-). For reasonable choice of the function, can we
have some large sample approximation of the sampling distribution of ¢ (Xn)?

A Case study on Probabilistic Approximation

The Weak Law of Large Numbers is often used in the computation of numerical integration.
The idea is to express the integral as the expected value of a function of a random variable.
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This expected value is then approximated by averaging the appropriate transformation of the
sample values. Let us consider a simple example of integrating the function g(x) = e in
the interval (0,1). Let us denote the integral as

1
I:/ e,
0

Certainly the integral is very simple to compute numerically and we can get its value also
using the following code:

g = function(x){
exp(-x~2)

}

integrate(g, 0, 1)

0.7468241 with absolute error < 8.3e-15

Suppose that we take a strategy to write down this integral as an expected value of a function
as follows:

I- / o= [ e () e = Exy, (e (4, 00)7)

—00

where f,,(x) is a probability density function for each m € {1,2,...} defined by

fm () =

mr™t0<r <1,
0, otherwise.

It is easy to follow that f;(z) is basically the uniform distribution over (0,1). Let us first

consider the case m = 1. Therefore, we simulate random numbers X1, ..., X, ~ Uniform(0,1)

and compute the average of e‘X%, ,e_X%, % ?:1 e~ X% which is an estimate of I, call it f;
By WLLN I, — I, in probability.

1000
runif (n)

n

X
I_n = mean(exp(-x72))

print(I_n) # Monte Carlo approximate of I

[1] 0.7557172
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It is clear that .7; is quite close to I and as n increases it becomes more close to I. Students
are encouraged to write a code for a visual demonstration of this fact.

Now suppose that instead of uniform distribution, that is for m = 1, we would like to try for
different values of m as well. We call

1
Yp(z) = —e @21 0 <2 <1
m

and zero otherwise, and m € {1,2,...}. We simulate X, ..., X,, ~ f,,(z) and compute
T Iy
m
i=1

In the following, we utilize the probability integral transform to simulate the observations from
fm(x). The CDF of f,, (x) is given by

0, z <0,
F . (x)y=<2™, 0<z<1
1, 1<z<x

If U ~ Uniform(0, 1), then X = UY™ ~ fim(x). Students are encouraged to run the following
codes and check on their own.

f m = function(x){
m*x” (m-1) * (0<x) * (x<1)

+

m= 2

n = 100

u = runif(n = n)

x = u (1/m)

hist(x, probability = TRUE, main = paste("m = ", m))

curve(f m(x), add = TRUE, col = "red", lwd = 2)

In the following we see how the sequence Ifzm) converges to I for different choices of m as
n — oo.

par (mfrow = c(2,3))

f m = function(x){ # the PDF
m*x” (m-1) * (0<x) * (x<1)

}

psi_m = function(x){ # psi function g(x)/f_m(x)
(1/m) *exp(-x~2) *x~ (1-m)

}
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s n_vals = 1:1000 # n values
9 m_vals = c(1,2,3,4,5,6) # different values of m
10 for(m in m_vals){
11 I n = numeric(length = length(n_vals))
12 for(n in n_vals){
13 u = runif(n) # simulate from uniform(0,1)
14 x = u (1/m) # probability integral transform
15 I n[n] = mean(psi_m(x))
16 }
17 plot(n_vals, I_n, col = "darkgrey", lwd = 2, type = "1",
18 xlab = "n", ylab = expression(I[n]~((m))),
19 main = paste("m = ", m))
20 F
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Figure 16: We check the convergence of the sequence L(lm) for different choices of m as n — oo.
It is evident that as m increases the rate of convergence becomes slower.

For different choices of m, we can estimate the standard error associated with the approxima-
tion. The estimated standard error associated with Monte Carlo approximation /,, is given by

2
s/\/n, where s = 1/ Lo Z?:l (wm(Xi) —1I ) . Let us plot the standard error with respect to

n

different choices of m.
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n = 10000

m_vals = 1:9

mat_psi_m = matrix(data = NA, nrow = n, ncol = length(m_vals))
length(m_vals))

I n_SE = numeric(length

for(m in m_vals){
set.seed(m+100)

runif(n = n)

u” (1/m)

I n = mean(psi_m(x))

I n SE[m] = sd(psi_m(x))/sqrt(n)

mat_psi_m[ ,m] = psi_m(x)

u

X

}
plot(m_vals, I_n_SE, type = "b", pch = 19,
col = "red", cex = 1.3, xlab = "m", lwd = 2,
main = expression(SE(I[n] {(m)})), ylab = "Standard Error")

se(1t™)
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Figure 17: The estimated variance of the Monte Carlo approximation for different choices of
m based on n = 10000 values are shown. It is clear that as m becomes large, the
standard error associated with the approximation increases. In the code we have
used the set.seed() function to generate reproducible figures.
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par (mfrow = c(2,3))
for(m in m_vals){
hist(log(mat_psi_m[,m]), probability = TRUE,
xlab = expression(I[n]~(m)), main = paste("m = ", m))

}
m=1 m= 2 m= 3
©
> ¥ > ° > <
2 2 o 2 S
g ° g ° 3
o o
R e e S T rrr rrrr 1 S Frrrrr1
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Figure 18: The sampling distribution of L(@m) for different choices of m. The distributions are
highly positively skewed for m > 1. In these figures, the histograms are drawn from

the log transformed values of ¥, (X;)’s for ¢ € {1,2,...,n}
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Figure 19: The sampling distribution of Iflm) for different choices of m. The distributions are
highly positively skewed for m > 1. In these figures, the histograms are drawn from

the log transformed values of ¢, (X;)’s for i € {1,2,...,n}

The problem can be generalized further using the fact that m not necessarily be a positive
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integer. In fact for any m > 0, f,,(z) is a probability density function. Let us relax this
condition for m and consider an interval of choices for m € (0,2) (say). Let us execute the
above exercise for real values of m. The shape of the distribution of 1,,(X) is shown in
Figure 23 (left panel). In the right panel of Figure 23, the estimated standard error of I,(Lm)
has been shown as a function of m. It is evident that there is a moderate value of m at which
the approximation is the best.

par (mfrow = c(2,3))
m_vals = seq(0.1, 1.8, by = 0.1)
n_vals = 1:1000
for(i in 1:length(m_vals)){
m = m_vals[i] # value of m
I_n = numeric(length = length(n_vals)) # value of psi_m(x_i)
for(n in n_vals){
u = runif(n = n)
u~(1/m)
I n[n] = mean(psi_m(x))
}
plot(n_vals, I_n, main = paste("m = ", m),
col = "darkgrey", lwd = 2, xlab = "n",
ylab = expression(I[n]), type = "1")

X
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Figure 20: The convergence of the sequence 1™ for different choices of m and it should be
noted that m is not an integer. The fluctuations in the values clearly indicate the
different rate of convergence as n — oc.
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Figure 21: The convergence of the sequence 1™ for different choices of m and it should be
noted that m is not an integer. The fluctuations in the values clearly indicate the
different rate of convergence as n — oc.
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Figure 22: The convergence of the sequence 1™ for different choices of m and it should be
noted that m is not an integer. The fluctuations in the values clearly indicate the
different rate of convergence as n — oc.

In the following code, let us estimate the standard error associated with the approximation.

par (mfrow = c(1,2))

m_vals = seq(0.1, 1.5, by = 0.08)

n = 1000

mat_psi_m = matrix(data = NA, nrow = n, ncol = length(m_vals))
for(j in 1:length(m_vals)){

m = m_vals[j]

u = runif(n = n)

x = u (1/m)

mat_psi_m[, jl = psi_m(x)
}

boxplot(mat_psi_m, names = m_vals)
plot(m_vals, apply(mat_psi_m, 2, sd)/sqrt(n), type = "b",
col = "red", lwd = 2, pch = 19, xlab = "m",
ylab = "Standard Error", main = expression(SE(I[n]~(m))))
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Figure 23: The standard error associated with the approximation I, is shown in the right
panel. It is clear that there is some intermediate value around 1 which gives the
best approximation. Fluctuations around the true value is high for both lower (close
to zero) and large value (>> 1) of m. There is a an intermediate state, where the
flucuation is the least.

The Delta method

Suppose that we have a random sample of size n from the Poisson distribution with rate
parameter \. We are interested in estimating the probability P(X > 1). In other words,
suppose that the number of telephone calls received by a customer in a day is assumed to follow
the Poisson distribution with mean A and we are interested to approximate the probability
that the customer will receive at least one call. We know that the MLE of X is X,,, the sample
mean. In addition, we have observed some of the important properties of X, .

e X, converges to the population mean A as n — oo in probability. That is for any
€>0,lim, P (‘X7n — )\‘ > e) = 0. In other words, we also say that X, is a consistent
estimator of A, population mean. This is also followed from the Weak Law of Large
Numbers (WLLN) which states that the sample mean converges to the population mean
in probability.
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e Using the Central Limit Theorem, we have also learnt that
— A
X, ~N ()\, ﬁ) , for large n,

which states that the sampling distribution of the sample mean can be well approximated
by the normal distribution for large sample sizes, when the samples are drawn from a
population distribution with finite variance.

In the current problem, the problem is to estimate a function of the parameter A which is
YA =P(X>1)=1—(1+Ne .
A natural choice is to approximate the parameter ¥)(\) by using
v(X,) =1-(1+X,)e

Now our task is to study the behavior of 1 (Tn), like unbiasedness, consistency and check
the asymptotic distribution for large n. Even if we are not able to obtain the exact sam-
pling distribution, but it will be important to check whether we can have some large sample
approximations by some known distributions.

By using Taylor’s approximation (first order) about A and neglecting higher order terms, we
can see that

0 (X2) =000 + (5, = 2) /0.
Taking expectations on both sides, we see that
E [y (X,)] = ¢\
This means that (X7n) is an approximately unbiased estimator of ¢)(\) at least for large n.

From the above computation, after some rearranging

)\36_2>‘

E (¢ (X,) =) ~ @) E(X, =) = () Var (X,) =

n

Ae

Therefore, approximate variance of v (X7n) is TQA In the following simulation, we visualize

the sampling distribution of v (X7n)

par (mfrow = c(2,3))
n_vals = c(4, 10, 20, 50, 100, 500)
rep = 1000
lambda = 2
psi = 1-(1+lambda)*exp(-lambda)
for(n in n_vals){

psi_vals = numeric(length = rep)
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for(d
X=

psi_

}

in 1:rep){
rpois(n = n, lambda = lambda)
vals[i] = 1-(1+mean(x))*exp(-mean(x))

hist(psi_vals, probability = TRUE,

xlab = expression(psi), main = paste("n = ", n), breaks = 30)
points(psi, 0, pch = 19, col = "red", cex = 1.3)
curve(dnorm(x, mean = psi, sd = sqrt(lambda~3*exp(-2*lambda)/n)), add = TRUE,
col = "red", lwd =2)
}
n=4 n= 10 n= 20
o
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Figure 24: The sampling distribution of the function of the sample mean ) (X7n) is visualized
for different sample sizes by histograms based of 1000 replications.
Exercises

e For

and

random variables X, X, ..., X,,, show that

E (f: Xz) = f:E(Xi)

Var (Zn: XZ) = Zn: Var(X,)+2) ) Cov(X,, X;).

i=1 i<j
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Let X;, Xs,...,X,, and Y;,Y,, ..., Y, be two sets of random variables and let a,, a,, ..., a

n

and by, by, ..., b,, be two sets of constants; then prove that
n m
v (ZaiXi,ijXj) = ZZCL b;Cov (X;, X, )
i=1 j=1 =1 j=

Suppose that X, X, ..., X, be a random sample of size n from a population with PDF
f(z) and CDF F(x). Define Y; = min(Xy,...,X,,) and Y, = max(X;, X,,...,X,,) be
the minimum and the maximum order statistics. Obtain the sampling distribution of Y;
and Y,,.

Suppose that X;, X,, ..., X, ~ Exponential(8) with mean 5 € (0,00). Obtain the exact
sampling distribution of Y; and Y,,. Fix  and the sample size n of your own choice.
Simulate a random sample of size n from the population and obtain the approximate
sampling distribution of Y; and Y,, using histograms based on m = 1000 replications.
Check whether your theoretical derivation matches with the simulation.

Suppose that X, X, ..., X,, be random sample of size n from the exponential distribution
with mean 5. Using MGF, obtain the exact sampling distribution of the sample mean
X,, and verify your theoretical result using computer simulation.

Suppose that X, X, ..., X, be a random sample of size n from the population distribu-
tion whose PDF is given by f(z|f) = 5,0 < 2 < 6 and zero otherwise. Suppose that we
are interested to estimate the parameter 6 using the sample mean X,,. Check whether
X, is an unbiased estimator of #. If not can you compute the bias? Also compute the
variance of X,,. Compute the average squared distance of the estimator from the true

value, that is E ( 9)

Suppose that in the above problem, instead of estimating 6 using X,,, we plan to estimate
using the largest order statistics, that is, Y, = max(X;, X,,...,X,,). Is it an unbiased
estimator of 7 Compute the variance of Y,, and also compute E(Y,, — 6)2.

Suppose that X, X,, ..., X,, be arandom sample of size n from the geometric distribution
with parameter p, (0 < p < 1). The population random variable X represents the number
of throws required to get the first success. Starting with uniform random numbers from
the interval (0,1), simulate n = 30 realizations from the distribution of X. Suppose
that we are interested to estimate 1/p using X,,, the sample mean. Based on M = 10°
replications obtain the sampling distribution of X, and draw the histogram. Do this
exercise for n € {3,5,10,25,50,100}. Do the histograms shrink as the sample size

increases? On each histograms check whether ﬁ Zj\il Xinu) is approximately equal to
the %. What is your conclusion about the unbiasedness of the estimator?

105



Loss function and the Risk function

Introduction

At the beginning of my Statistical Computing lectures, I often share a thought with my
students: In statistics, our ultimate goal is to uncover the truth. However, this truth is beyond
the reach of humanity—mnot only now but even in the distant future. When we collect data
from natural processes, we aim to understand the workings of nature through mathematical
models. Yet, all our efforts based on the collected data merely approximate the true functioning
of nature, and achieving 100% accuracy is inherently impossible.

This naturally leads to an important question: If the absolute truth is unattainable, how can
we validate statistical approximations and assess their accuracy? This question lies at the very
core of understanding the principles and philosophy of statistical science.

However, we need to devise strategies to evaluate how accurate statistical approximations are
in estimating the unknown parameters. Suppose that we have a random sample of size n
from the population density function f(x;6) for § € ©. We can approximate ¢ based on some
function ¥(Xy, ..., X,,), based on a sample of size n. We need to measure the closeness of the
estimator v,, to 6.

Simulation experiment with Bernoulli distribution

In this section, we approximate the risk function of the sample proportion as an estimator of
the true proportion when sampling from the Bernoulli(p) populations. We perform this task
in three steps.

e Step - I

— Fix the parameter p

— Fix the sample size n

— Simulation X, X, ..., X,, ~ binomial(1, p).
— Compute the loss (p,, —p)2

Repeat the following codes multiple times to realize that the loss function I(p,,, p) is a random
variable.
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p=0.1
n = 10
X = rbinom(n = n, size=1, prob = p)

head (x)

[1] 001010

pn_hat = mean(x)
head (pn_hat)

[1] 0.2

(pn_hat - p)~2

[1] 0.01

e Step - II

To compute the average loss, we need to repeat the above process M times (say) to get an

estimate of the risk at a specific value of p.

M = 1000

pn_loss = numeric(length = M)

for(m in 1:M){
X = rbinom(n = n, size=1, prob = p)
pn_hat = mean(x)
pn_loss[m] = (pn_hat - p)~2

}

head(pn_loss)

[1] 0.00 0.01 0.04 0.01 0.01 0.00

pn_risk = mean(pn_loss)
head (pn_risk)

[1] 0.00806
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Step - I and Step - II have been carried out for a fixed value of p. If we want to obtain the
performance of the estimator irrespective of the true value, we must evaluate its performance
for each p € (0, 1), which will give us the risk profile of the estimator. This also called a risk
function, which is a function of the parameter p and contain no randomness.

R(pn,p) =E((Pn:p))-
We can plot this function as a function of p.

e Step - III

— Discretize the parameter space (0, 1) into distinct points p; < p, < ... < py.
— For each p;,1 < j < L, perform step - I and step - II.

prop_vals = seq(0.01, 0.99, by = 0.01)
pn_risk = numeric(length = length(prop_vals))
M = 1000 # number of replications
for(i in 1:length(prop_vals)){
p = prop_vals[i]
pn_loss = numeric(length = M)
for(m in 1:M){
X = rbinom(n = n, size=1, prob = p)
pn_hat = mean(x)
pn_loss[m] = (pn_hat - p)~2
}

pn_risk[i] = mean(pn_loss)

}
head (pn_risk)

[1] 0.001232 0.001758 0.002740 0.003590 0.004500 0.005570

plot(prop_vals, pn_risk, col = "red",
pch = 19, xlab = "p", ylab = expression(R(hat(p[nl),p)),

main = paste("n = ", n))
curve(x*x(1-x)/(n), add = TRUE, col = "blue", 1ty = 2,
lwd = 3)
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Figure 1: The simulated risk function of the MLE of the probability of head p under the
squared error loss. The risk, that is, expected loss has been approximated based on
the 1000 replications.

Basically, the risk function says that on an average what will be the mistake in squared error
scale, if we replace the true value of p with the sample proportion.

e Step - IV

A natural question arises, what will happen if we change the sample size n. Intuition suggests
that as n increases, the distance between the truth and estimate would be small, that &(p,,, p)
would be a decreasing function of n at each p € (0,1). In the following code, we see the
behavior of the risk function for different choices of p.

n_vals = c(5, 10, 20, 30, 50, 100)
M = 1000 # number of replications
par (mfrow = c(2,3))
for(n in n_vals){
prop_vals = seq(0.01, 0.99, by = 0.01)
pn_risk = numeric(length = length(prop_vals))

for(i in 1:length(prop_vals)){
p = prop_vals[i]
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pn_loss = numeric(length = M)

for(m in 1:M){
x = rbinom(n = n, size=1, prob = p)
pn_hat = mean(x)
pn_loss[m] = (pn_hat - p)~2

}

pn_risk[i] = mean(pn_loss)

}

plot(prop_vals, pn_risk, col = "red",
pch = 19, xlab = "p", ylab = expression(R(hat(p[nl),p)),
main = paste("n = ", n), ylim = c(0,0.055))

}
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Figure 2: The risk function is obtained by using computer simulation based on 1000 replications

for different sample sizes n. It is clear that as n — oo, te risk goes to zero.

It would be interesting to see whether ® (p,,,p) — 0 as n — oo for all p € (0,1). Theoretical
computation can help us in establishing/disproving this claim. The simulated shapes actually

supports the theoretical computations as well. The theoretical computation

1 1
B(p,) =~ > B(X,) = —nmp=p.
=1
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Therefore,
p(1—p)

E(X -

n

—p)2 = Var, (X7n) = %n x Var(X,) =

In the above simulated plots of the risk profiles for different choices of n, you can add the
curve p(1 —p)/n and see that the curve is in well agreement is with the simulation.

Simulation experiment with the normal distribution

Suppose that we have a random sample of size n from the N(u,1) population distribu-
tion. We aim to estimate the parameter p using two different estimators 7} = X, and
T2 — 1\/.[6(:1121411()(17 eey X’I’L)'

We are aiming to compare the performance of these two estimators at different values of the
unknown parameter p. Therefore, we compute E (T} —,u)2 = R(T},n) and E(T, —,u)2 =
R<T27N)

Consider an interval of u values of your own choice and compute the risk functions using
computer simulations and plot them in a single plot window. What is conclusion about the
choice of the estimator?

Sample Mean or Sample Median

n = 10

sigma = 1 # fixed

a = -1

b=1

M = 1000 # number of replications
mu = a

x = rnorm(n = n, mean = mu, sd = sigma)
mean (x)

[1] -1.020313

median(x)

[1] -0.9375056
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sample_mean = numeric(length = M)
sample_median = numeric(length = M)

for(m in 1:M){
x = rnorm(n = n, mean = mu, sd = sigma)
sample_mean[m] = mean(x)

sample_median[m] = median(x)

}

mean( (sample_mean - mu) ~2)

[1] 0.09855808

mean( (sample_median - mu)~2)

(1] 0.130316

par (mfrow = c(1,2))

hist(sample_mean, probability = TRUE, main = paste("'n = ", n),
breaks = 30, xlab = expression(bar(X[n])))
hist(sample_median, probability = TRUE, main = paste("n = ", n),

breaks = 30, xlab = expression(Med(X[n])))
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Figure 3: The sampling distribution of the sample mean and the sample median have been
simulated for sample size n = 10 based on 1000 replications. We consider the normal
distribution with mean -1 and variance 1 for demonstration.

As the value of i changes, we need to check the performance of the sample median and the

sample mean.

mu_vals = seq(a, b, by = 0.01)

risk_mean = numeric(length = length(mu_vals))
risk_median = numeric(length = length(mu_vals))
for (i in 1:length(mu_vals)) {

sample_mean = numeric(length = M)
sample_median = numeric(length = M)

for(m in 1:M){
x = rnorm(n = n, mean = mu, sd = sigma)
sample_mean[m] = mean(x)
sample_median[m] = median(x)

}

risk_mean[i] = mean((sample_mean - mu)~2)
risk_median[i] = mean((sample_median - mu)~2)

}

plot(mu_vals, risk_median, type = "p", col = "red", lwd
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ylim = c(0, .16), ylab = expression(R[T] (mu)),
xlab = expression(mu))
points(mu_vals, risk_mean, type = "p", col = "blue", lwd = 2)
legend ("bottomleft", legend = c(expression(T[1]), expression(T[2])),
col = c("blue", "red"), bty = "n", lwd = c(2,2))
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Figure 4: The risk values will be constant when the number of replications is large, that is,
M — oo. From the simulation it is clear that sample mean has uniformly lesser
risk than the sample median when used as an etimator for estimating the mean of
normally distributed population. Students are encouraged to experiment with this
simulation for different values of p and sample size n.

A desirable property of the sample mean and sample median would be to become close to
the true value of p as n — oo. Using the following visualization, we can check whether these
estimators are consistent estimators of the population mean. The following simulation suggests
that indeed both of them are consistent, however, fluctuations about the true value is more for
the sample median as compared to the sample mean. The following algorithm is implemented
to check the consistency.

o Fix p = py
e Fix o?
o Consider n € {1,2, ... ,nyax} (sample size)

e For each n,

— simulate X;, X5, ..., X

n

~ N (o, 02)
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— Compute Sample Mean X,
— Compute Sample Median Med(X,,)

« Plot (n,X,,) and (n,Med(X,,)) for n € {1,2,...,npax}-

n_vals = 1:1000
mu = 0
sigma = 1
sample_median = numeric(length = length(n_vals))
sample_mean = numeric(length = length(n_vals))
for(n in n_vals){
x = rnorm(n = n, mean = mu, sd = sigma)
sample_median[n] = median(x)
sample_mean[n] = mean(x)

}
par (mfrow = c(1,2))

plot(n_vals, sample_median, type = "1", col = "grey", lwd =2,
xlab = "sample size (n)", main = expression(Med(X[n])),

ylab = n ll)
abline(h = mu, col = "blue", lwd = 3, 1ty

2)

plot(n_vals, sample_mean, type = "1", col = "grey", lwd =2,
xlab = "sample size (n)", main = expression(bar(X[nl)),

ylab =N ll)
abline(h = mu, col = "blue", lwd = 3, 1lty = 2)
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Figure 5: As the sample size increases, the sample mean and sample median converge to the
true value pu as n — oo.

1 Asymptotic Comparison of Sample Mean and Sample Median

If (X;,X,,...,X,) be a random sample of size n from the N (u,0?). Then it can be
shown that

Vi (X, = 1) = NV (0,0%)

and

Vi (Med(X,,) — ) 3 v (o, a2g> .

This result also supports the simulation experiment which showed that both sample mean
and sample median converged to the true value of i, however, sample median has a larger
variance as compared to the sample mean.

Sample Mean or Sample Variance (Poisson distribution)

To estimate the parameters of the population, the method of moments is a way to obtain
estimator(s). In this method, population moments are made equal to the sample moments
and the population parameters are expressed as the function of samples.
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If the population distribution follows the Poisson distribution with mean A. Then to obtain
the MoM estimator of A\, we equate the population mean and the sample sample mean X,
which gives the following equation
X —E(X) =\

Therefore, the MoM moment estimator of A is X,,. However, one can also observe that the
population variance is also A therefore, equating the sample variance S? with the population
variance (\), we find that the sample variance is also an MoM estimator of X\. Therefore, the
first conclusion is that the Method of Moment estimator is not unique.

A natural question arises, which estimator to prefer in estimating the unknown parameter A!
We have the following observations,

E(X,) =A=E(S2).

Therefore, bot}ﬁre unbiased estimators of A. We now aproximate the risk functions cor-
responding to X,, and S2, which are denoted by R (Xn, )\) and R (52, ), respectively, for
A€ (0,00).

In the following

n=>5 # sample size
M = 1000 # number of replications
lambda = 1

sample_mean = numeric(length = M)
sample_var = numeric(length = M)
for(i in 1:M){
x = rpois(n = n, lambda = lambda) # simulate from Poisson(1)
sample_mean[i] = mean(x)
sample_var[i] = var(x)
}
par (mfrow = c(1,2))
hist(sample_mean, probability = TRUE,
xlab = expression(bar(X[n])), main = paste("n = ",n))
points(lambda, O, pch = 19, col = "red", cex = 1.5)
hist(sample_var, probability = TRUE,
main = paste("n = ", n), xlab = expression(S[n]~2))
points(lambda, O, pch = 19, col = "red", cex= 1.5)

# Computing the risk values
risk_sample_mean = mean((sample_mean - lambda) ~2)

cat("The estimated risk the sample mean under squared error loss function is \n",risk_sample
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The estimated risk the sample mean under squared error loss function is
0.22404

1 risk_sample_var = mean((sample_var - lambda)~2)
2 cat("The estimated risk of the sample variance under squared error loss function is \n",risk

The estimated risk of the sample variance under squared error loss function is
0.64821

n=>5 n=>5
[0} ] .
o | ©
o
o | m _
2 ° T > 3
A ° A
N
N (@)
O._ —
o o
A . .__..
© T 1 T T © | | |
0.0 1.0 2.0 0 2 4 6
Xn s;

Figure 6: The simulated histograms are obtained based on 1000 replications. The population
parameter A is fixed at 1 and the sample size n = 5 is fixed for simulation. The
histograms clearly suggests that the spread is more for the sample variance as com-
pared to the sample mean about the true value of A, which is denoted by the red
dot.

Since, we do not know what is the true value of A, in the following code, we performed the
same task at different choices of A. For simulation, purpose, we discretize the (0.1, 3) interval
for possible choices of .

1 n=25
2 M 1000
3 par(mfrow = c(1,1))
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lambda_vals = seq(0.1, 2, by = 0.03)

risk_sample_mean = numeric(length = length(lambda_vals))
risk_sample_var = numeric(length = length(lambda_vals))

for(j in 1:length(lambda_vals)){
lambda = lambda_vals[j]
sample_mean = numeric(length = M)
sample_var = numeric(length = M)
for(i in 1:M){

x = rpois(n = n, lambda = lambda)

sample_mean[i] = mean(x)
sample_var[i] = var(x)

3

risk_sample_mean[j] = mean((sample_mean - lambda) ~2)
risk_sample_var[j] = mean((sample_var - lambda) 2)

}

plot(lambda_vals, risk_sample_var, type = "p",
col = "red", lwd = 2, ylab = expression(R[T] (lambda)),

xlab = expression(lambda), cex

lines(lambda_vals,lambda_vals/n + 2*lambda_vals~2/(n-1), col = "black",

lwd = 3, lty = 2)

points(lambda_vals, risk_sample_mean, type = "p",

legend("topleft", legend = c(expression(bar(X[n])), expression(S[n]~2)),
col = c("magenta", "red"), bty = "n", lwd = c(2,2))

lines(lambda vals, lambda vals/n, col = "black",

lwd = 3, 1ty = 2)

1.3)
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Figure 7: Approximation of the risk function for the sample mean and sample variance in
estimating the parameter A for the Poisson distribution. It is obvious from the plot
that the sample sample mean has a lower risk as compared the sample variance.
Therefore, X,, is a better estimator as compared S2, although, both are unbiased

estimators of A\. The magenta lines indicate the exact risk function obtained by
theoretical computation.

In the classroom, a student named Vaishnavi asked which method would likely converge faster
to the true value. The idea is related to the consistency, which means that as n — oo, the
following claims are true or not.

X, B 5280

To answer this question, let us assume that the true value is A = \; = 2. We simulate the a
sample of size n from the Poisson()\,) and compute X,, and S2? and check how these random
quantities behave as n — oo. The following code will do this task.

par (mfrow = c(1,1))

lambda_0 = 2

n_vals = 1:1000

sample_mean = numeric(length = length(n_vals))

120



10

11

12

13

14

15

16

17

sample_var = numeric(length = length(n_vals))
for(n in n_vals){
x = rpois(n = n, lambda = lambda_0)
sample_mean[n] = mean(x)
sample_var[n] = var(x)
}
plot(n_vals, sample_var, col = "grey", lwd = 2,
xlab = "sample size (n)", type = "1",
ylab = "Estimator")
lines(n_vals, sample_mean, col = "red", lwd = 2)
legend("topright", legend = c(expression(bar(X[nl)),
expression(S[n]~2)),
col = c("grey", "red"), lwd = c(2,2), bty = "n")

Estimator
2
|

(n><|

> NS

0 200 400 600 800 1000

sample size (n)

Figure 8: It can be observed that as the sample size increases, the convergence of the Sample
variance is much faster as compared to the sample mean to the true value of A = 2.

The following is the python implementation of the above convergence concept. Thanks to

Sangeeta for the Python implementation.

import numpy as np
import matplotlib.pyplot as plt

lambd_0 = 2
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n_vals = np.linspace(1,1000,num=1000)
sample_mean = []
sample_var = []

for
X

n in n_vals:
= np.random.poisson(lambd_0,int(n))

sample_mean.append (np.mean(x))
sample_var.append (np.var(x))

plt.
plt.
plt.
BILG
plt.
plt.
.show()

plt

plot(n_vals,sample_var,c="r",label="$S"2_{n}$")
plot(n_vals,sample_mean,c="g",6label="$\overline {X_{n}}$")
legend ()

xlabel("sample size (n)")

ylabel("Estimator")

figure(figsize=(1,1))

Figure 9: It can be observed that as the sample size increases, the convergence of the Sample

variance is much faster as compared to the sample mean to the true value of A = 2.
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Figure 10: It can be observed that as the sample size increases, the convergence of the Sample
variance is much faster as compared to the sample mean to the true value of A = 2.

Exact Computation of the variance of 52

We recall that if we have a random sample of size n from the a population with mean p and

variance o2. Then )

-\ O
Var (Xn) =
—2
In addition, $? = -1 Z?zl (X; —X,,)" is an unbiased estimator of 0. To compute the

variance Var(S2), we observe that the sample variance can also be expressed as

n n

S%:M_DZZ<Xi_Xj)2'

i=1 j=1

The following general results hold for all population distributions with finite fourth order
moment.

o E(5%) =02

o« Var(S3) =5 (na — 5=103), where py = B(X;) and p; = E(X; —py)”,j = 2,3,4.

o In addition, the covariance between X,, and S2, Cov (X,,, S2) can also be expressed in
terms of fuy, pig, fi3, py-
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For our problem, the population follows the Poisson distribution with parameter A. Therefore,
E(S2) = . The fourth order central moment for the Poisson distribution:

4
4 o
n=EX A =Y (i)E(X‘H)/\l =324\,
=0

The raw moments E(X?),i = 1,2, 3,4, can be computed using the Moment Generating function
by taking derivatives and evaluating at t = 0. The MGF of Poisson distribution is given by

My (t) =MD —o0 < t < 0.

My(0) = X (0.1)
ML(0) = M+ (0.2)
MZ0) = XN 4+3X2+ A (0.3)
Y(0) = A H6AHTA A (0.4)
This gives
lU;4 == 3)\2 + )\
Therefore, the variance of S2 is given by
1 n—3
Var(S2) = — (3>\2 A — —AQ) 0.5
ar(s2) = o (3®+A- DT (05)
A 272
= — . 0.6
n * n—1 (06)

In the following R code, we add the analytically computed risk function with the risk function
estimated by using simulation. The exact risk function is given by

A 2)2
78(5%,)\)2—+7,0<>\<oo.
n n—1

Making this problem more interesting

We found that both X, and S2? are unbiased estimators of A\. However, after comparing the
risk functions, we found that o
R (X, A) < R(52,0)

for all A € (0,00). We can extend this to a class of estimators defined for every constant a as
follows: o o
W, (X,,S52) =aX, + (1—a)S2.
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For every a, the estimator W, is an unbiased estimator of A. Although X, is better that S2,
is it better than W, for all constants a? In other words, is the following statements true?

R(X,,A) = R(W,A) < R(W,,\), forall 0< A< oo.

Before getting into some statistical theories that may guide us to determine whether X, is
indeed the best choice, you can plot the risk function of & (W,,\),0 < A < oo for different
choices of a using computer simulation. Note that that for @ = 1 (corresponds to X,,) and
a = 0 (corresponds to S2) risk functions are already obtained in the previous section. In
addition, check that whether for certain values of a, the risk function falls below R (X7n, )\) for
some A values. In the following, let us try to compute the risk of W,.

RW,,A) = E\(W, —A)? (0.7)
= E[a(X,~N) +(1-a)($2-N)] (0.8)
= a*R(X,,\)+(1—a)®R(S,,\) + 2a(l —a) x Cov (X,,,52) (0.9)
_ az%+<1_a)2 (2+ nQiz )+2a(1—a):; (0.10)

To obtain the best choice of a, we need to minimize the risk function as a function of a.

The equation d%ﬂ(Wa,/\) = 0, gives * = 1 and %Q(Wa,/\)]azl = ile > 0. Therefore

the minimum risk is obtained what a = 1, which corresponds to the sample mean X, for all

A€ (0,00).

Therefore, we are able to establish that if we consider the class of estimators W, (unbiased)
indexed by constant a € R, then X, = W, is the best estimator in this class when compared
with respect to the risk function under the squared error loss.

However, it does not guarantee that the sample mean is the best estimator amongst all estima-
tors of A existing in this globe. Therefore, we need to develop theories which will be helpful to
determine whether the sample mean is indeed THE BEST CHOICE to estimate the unknown
parameter A.

A natural extension is to extend the class to any unbiased estimator of A. That is can we
claim that for any unbiased estimator 7, of A,

R (X, \) < R(T,, \)

for all A € (0,00).

Search for the holy grail (the best estimator)

See Next Chapter (Unbiased Estimation)
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Conceptual Exercises

Suppose that a random sample (X, X,, ..., X,,) of size n from a population which is charac-
terized by the following probability density function:

2z

0, otherwise

where 6 € © = (0, 00) be the parameter space. We are interested in estimating the parameter
0 based on the given random sample. Let Y, = max(X;, X, ..., X,,) be the maximum order
statistics and you decided to estimate 6 using Y,,. Answer the following:

1. Plot the above PDF for different choices of 6 in a single plot window. Obtain the CDF
of the given PDF and plot the CDF different choices of 6 in a single plot window. Make
a side by side plot using par (mfrow = c(1,2)).

2. Obtain the exact sampling distribution of Y,, and write down the both probability density
function and the cumulative distribution function of Y,.

3. Under the squared error loss function, compute the risk function X (Y,,,6),0 < 6 < oco.
Also, plot the risk function.

4. Show that as n — oo, Y,, — 6 in probability. For a fixed € > 0, compute the limit
lim, .. P(]Y, — 6| > ¢) and show the limit is equal to zero as n — co. Another possi-
bility is to apply some inequality to bound the P (Y, — 6| > ¢) with constant a,, which
converges to 0 as n — oo (Hint: Markov Inequality). Write a computer simulation to
visualize that the largest order statistics Y,, indeed converges to 6 as n — co.

5. Compute the expected value of Y,, and compute the bias of the estimator Y, , which is
given by
Bias, (Y,,) = E(Y,,)) — 6,6 € (0,00).

Also check whether the bias Bias, (Y,,) tends to zero as n — oo. That means is the
estimator is asymptotically unbiased? Compute the value of the constant c,, so that

Ey(c,Y,,) = 6 for all § € (0,0).

6. Compute the variance of Y,,, which can be computed as

Varg (Y,) = By (Y2) — (By(Y,,)*.

7. Show the following identity holds for all § € (0, c0):

R (Y,,,0) = By (Y, —0)" = Vary(Y,,) + (Biasy(V,,))".
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8. Using computer simulation, approximate the risk function Y, , R(Y,,,0),60 € (0,00). The
challenge, the reader may find is to simulate from the population distribution as some
inbuilt function in R may not be available. To simulate a random number from the
given distribution (a) Compute the CDF Fy(z), (b) Simulate U ~ Uniform(0,1). (c)
Compute X = Fy!'(U), which is the inverse image of U under Fy. Then X ~ f(x).
Overlay the analytically computed risk function on the plot of the risk function obtained
by computer simulation.

Another illustrative example

Suppose that we have a sample of size n (X, X,, ..., X,,) from a population which is charac-
terized by the following probability density function and our goal is to estimate the parameter
6 € (0,00).

0
0, otherwise

At the first step, we compute the cumulative distribution function and plot both PDF and
CDF for different choices of 6 values.

I1—-(1+2)%0<z<o00
Fx(z) = .
0, otherwise
theta = 3
f = function(x){
(theta/(1+x) ~ (1+theta) ) *(x>0)
}

F = function(x){
(1 - (1+x) " (-theta))*(x>0)
+
par (mfrow = c(1,2))
curve(f(x), -1, 4, col= "red", lwd = 2)
curve(F(x), -1, 4, col = "red", lwd = 2)
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Figure 11: The PDF and CDF of the population random variable X is shown. The value
of 6§ = 3 is considered. The reader is encouraged to modify the R codes to draw
different shapes for different choices of 6 values.

Suppose one starts with the maximum and minimum order statistics to estimate the parameter
6, which are defined as Y,, = max(Xy,..., X,,) and Y; = min(X;, X,, ..., X,,). First of all, we
compute the sampling distribution of ¥; and Y,, and plot the PDFs.

fo () = nf(1+ y)~ " 0 < y < oo,
(e 0, otherwise.

n—1
B n(l—(l—i—y)_e) W,O<y<oo,
fy,(y) = .
0, otherwise.

par(mfrow = c(1,2))

n = 30

f Y1 = function(x){

(n*theta* (1+x) " (-n*theta-1))*(x>0)

+

curve(f_Y1(x), -1, 4, col = "red", lwd = 2,
main = paste("n = ",n),
ylab = expression(f[Y[1]](y)), xlab = "y")

f_ Yn = function(x){

n* ((1-(1+x) " (-theta)) " (n-1))*theta/ (1+x) "~ (1+theta) * (x>0)
}
curve(f_Yn(x), -1, 10, col = "red", lwd = 2,
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main = paste("n = ",n),

ylab = expression(£f[Y[n]ll(y)), xlab = "y")
n= 30 n= 30
(@)
2
o™
o )|
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Figure 12: The sampling distribution of the Y; and Y,,. The value of 0 is set to 3. It is clear
that Y; is highly concentrated at 0 and the concentration increases as n becomes
large. Therefore, Y; does not appear to be a good choice for estimating 6. The
sample size is fixed at n = 30.

One may probably think of using the maximum order statistics Y,, = max(X;, Xy, ..., X,,) to
estimate the parameter 6. Let us investigate the properties of the estimator Y,,. At the first
step we can compute the mean and higher order moments of Y,.

The mean of Y, can be computed by computing the expectation of Y, + 1 as follows:

Eg(Y,+1) = /0 (1+y)n [1—(1+y>“’]”1-<1f;>1+9dy (0.11)
= nB (1 - ;,n> ,0 € (1,00) (0.12)

The expectation exists only when 6 € (1,00). More importantly, E(Y,) # 6, therefore,

Y, is not an unbiased estimator of . A similar computation will give us E4(Y,, +1)" =

nB (1 - %, n) ,0 € (2,00). The above result can be generalized as
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Bt = [0 e o)

= n3B (1—%,71) ,0 € (m,00). (0.14)
Then mth order raw moments exists when 6 € (m,o0). Use the idea of change of variable as

z = (1+y)~? to compute the above integrals. Therefore, we can evaluate the risk of Y,, under
the squared error loss as

R(Y,,0) = By(Y, 0> =E,[(Y, +1)—(0+1) (0.15)
= nB (1—Z,n> —2n(0+1)B (1—é,n> + (1 + 6)? (0.16)

We need to keep in mind that the risk function exists only when 6 € (2,00). Let us plot the
risk function for different choices of . The following figure suggests that the performance of
this estimator is reasonable at a small subset of the parameter space.

risk_fun_Yn = function(theta){
n*beta(1-2/theta,n)-2*n*(theta+1l)*beta(l-1/theta,n) +(l+theta) 2
+
curve(risk_fun Yn(x), 2.3, 10, col = "red", lwd = 2,
ylab = expression(R(Y[n],theta)), xlab = expression(theta))

R(Y,, 6)
20 40 60 80 100

Figure 13: The risk function of Y,, as a function of §. The sample size is fixed at n = 10.
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Let us check how the shapes changes with respect to sample size n. The most important
observation from Figure 14 is that as n — oo, R(Y,,, 0)#0, therefore Y, is not a mean squared
consistent estimator, which is certainly not a desirable property. The example of Y,, is just for
an illustration purpose, how for a given statistic what properties to look at. In the following,
we compare two estimators of 8, one is the method of moment and the other one is the MLE.

n_vals = c¢(10,20,50,100,500)
n=25
par (mfrow = c(1,1))
curve(risk_fun_Yn(x), 2.3, 10, col = "red", lwd = 2,
ylab = expression(R(Y[n],theta)), xlab = expression(theta))

for(i in 1:length(n_vals)){

n = n_vals[i]

curve(risk_fun Yn(x), col = i, 1lwd = 2,

1ty = i, add = TRUE)

}
o _|
00
—~~ o _|
@ ©
c
Z
¥ 9
o _|
~N
[ [ [ [

Figure 14: The risk function of the maximum order statistics for different choices of the sample
size n under the squared error loss.

Method of moments Estimator

Using the method of moments, we can obtain an estimate of §. The population mean E(X) =

9711, which exists only when 6 € (1,00). Therefore, equating the sample mean X, with
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population mean, we obtain the method of moment estimator of 6 as

—_— 1
0 X, +1 n(say)

Method of Maximum Likelihood

Using the method of maximum likelihood, we can also obtain the estimator of 6 as follows:
The likelihood function is given by

L 0
O =] 0<fh<x
.1:[1(1—1-361-)1*9

K2

and the log-likelihood function is given by

[(6) =nlogh — nZlog(l +z;).
=1

m and l//(a) = —0% < 0 for all 0 (S (0,00)

Therefore, [(0) attains its maximum at 6*. Therefore, the Maximum Likelihood Estimator of
0 is given by

Equating ’(f) = 0 implies, 6* =

— n
) E— =W, .
MLE S Jog (14 X) (say)

As per our notation, V,, and W,, are the method of moments and maximum likelihood estima-
tors of 6, respectively. Now we have three estimators of 8 and we are interested in comparing
their risk functions which are listed as R(Y,,,0), R(V,,,0) and R(W,,,0). It is important to
note that the risk functions may exists only on a subset of the parameter space © = (0, 00).

We first try to compute the sampling distribution of W,,. We compute it step by step.

e Step - I Consider Y =log(1+ X), then the CDF of Y is given by

Fy(y) =P <y) = P(log(l+X)<y) (0.17)
= P(X<eV—1) (0.18)
1l—e % 0<y< oo (0.19)

Therefore, Y = log(1 + X)) ~ Exponential(rate = ) which is G (a = 1,3 = §) distribution.

e Step - II Let YV, = log(1+ X,),1 < i < n, then by using the Moment Generating
Function technique, we can easily show that Z,, = Z?Zl Y, = Z;—Ll log(1+ X;) ~ G(a=
n, B3 = %), whose PDF is given by

annflefez
fZ (Z)—W,O<Z<OO

n

and zero otherwise.
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e Step - III The MLE W, = 2-. Using the transformation formula, we obtain fy, (w)

as
fwg(uo ::fzn <£§>‘Egi <%%)’,0 < w < 00,

which gives the PDF of W, as

and zero otherwise. In the following R code, we visualize the sampling distribution of

the MLE of § (PDF) for different choices of § and sample size n.

par (mfrow = c(1,2))
f Wn = function(w){
n* (nxtheta) "n*exp (-n*theta/w)/(w™ (n+2) *gamma (n) ) * (w>0)

}

theta = 3

n = 20

curve(f_Wn(x), -0.5, 7, col = "red", lwd = 2, xlab = expression(w),
ylab = expression(f[W[n]](w)), main = bquote(theta == .(theta)))

n = 10

curve(f_Wn(x), add= TRUE, col = "blue", lwd = 2)

n=>5

curve(f_Wn(x), add= TRUE, col = "magenta", lwd = 2)
points(theta, 0, pch = 19, col = "green", cex = 1.3)
legend("topright", legend = c("'n = 5", "n = 10", "n = 20"),

col = c("magenta", "blue", "red"), lwd = c(2,2,2), bty = "n")

n = 10

theta = 3

curve(f_Wn(x), -0.5, 8, col = "red", lwd = 2, xlab = expression(w),
ylab = expression(f[W[n]](w)), main = bquote(n == .(n)))

theta = 5

curve(f_Wn(x), add= TRUE, col = "magenta", lwd = 2)
legend("topright", legend = c(bquote(theta == 3), bquote(theta
col = c("red", "blue"), lwd = c(2,2), bty = "n")
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Figure 15: The sampling distribution of the MLE W, of 6 for different choices of 6 and different
sample size. Left panel: As the sample size increases, the sampling distribution of
W,, is highly concentrated about the true value of # = 3, which is a desirable

property of the MLE (consistency).

e Step - IV To compute the risk R(W,,,0), we compute

nb
EW,) = " > 1,
and
292
EW2)=—— " n>2
W) = D™

Therefore, the risk under the squared error loss is given by

E, (W, —0)° = E,(W2)—20E,(W,) + 6> (0.20)
B 6%(n + 2) .
= oD 2. (0.21)

The following observation is important.

o Biasy(W,) =Ey(W,)—0=-2£ —0=_- — 0asn — oco. Therefore, W, is asymptoti-
cally unbiased estimator.
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o R(W,,0) = Ey(W, —0)*> — 0 as n — oo. Therefore, W, — 6 in probability as n — oo
(a simple application of Markov Inequality).

Let us now verify whether the theoretical computation of the risk function for the W, is
supported by the simulation study as well. We follow the same scheme as previous.

e Fix 0 and fix n, sample size.

o Simulate X, X,,..., X,, ~ f(x|6)

o Compute W,

o Compute the loss (W, — 6)?

¢ Repeat the above three steps M times to compute the average loss.

o Repeat above five steps for different choices of 6 from the parameter space.
o Plot the average loss values (approximate risk) at each value of 6.

In the above algorithm, primary challenge is to simulate from the given PDF as some inbuilt
function may not be available to directly simulate using R or Python. Let us use the probability
integral transform to simulate X, ..., X,, ~ f(z|f). Simulate U ~ Uniform(0, 1) and compute
X = F¢'(U), where Fx! is the inverse of the CDF. In this case, the equation to generate
X ~ f(x]0) becomes

X=(1-U)s—1,0<U<1.

In the following first verify whether the simulation study.

n = 100
theta = 3 # true parameter value
u = runif(n = n, min = 0, max = 1) # simulate U(O0,1)
x = (1-uw)~(-1/theta) - 1 # probability integral transform
hist(x, probability = TRUE, main = bquote(theta == .(theta)),
breaks = 30) # histogram

curve(f(x), add = TRUE, col = "red", lwd = 2) # add the original pdf
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Figure 16: simulated realization from the given PDF f(x;6 = 3) using probability integral
transform.

Let us now execute simulation of the risk function using computer simulation and verify with
the theoretical result.

M = 1000 # number of replications
n = 10
theta_vals = seq(0.1, 4, by = 0.1)
risk_vals = numeric(length = length(theta_vals))
for(i in 1:length(theta_vals)){

theta = theta_vals[i]

loss_vals = numeric(length = M)

for(j in 1:M){

u

runif(n = n, min = 0, max = 1)
X (1-u)~(-1/theta) - 1
W_n = n/sum(log(1+x))
loss_vals[j] = (W_n - theta) 2

}

risk_vals[i] = mean(loss_vals)

}
plot(theta_vals, risk_vals, col = "red", pch = 19,
xlab = expression(theta), ylab = expression(R(W[n],theta)))
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curve (x~ 2% (n+2)/((n-1)*(n-2)), lwd = 3, col = "blue",
add = TRUE, 1ty = 2)

o [ ]
2
,.‘
— o | e
® o oo""
= K
¥ o | /
—
Q—j
© 7 I I I I
0 1 2 3 4
0

Figure 17: The risk function is obtained by computer simulation for the MLE W, of 6. True
risk function is added for reference (blue dotted line).

The MLE W, has desirable properties. We are yet to check it for the Method of Moment
estimator V,,.

Approximation of R(V, ,0)

b1 s diff
cult to obtain. Therefore, an analytically tractable expression of the risk function is almost
impossible to obtain. However, we can possibly obtain an approximation of the risk function
for large sample size n for a subset of the parameter space © = (0,00). In the following, we
first obtain the risk function by computer simulation.

The exact sampling distribution of the method of moment estimator V,, = X,

M = 500 # number of replications
n = 10
theta_vals = seq(0.1, 10, by = 0.1)
risk_vals = numeric(length = length(theta_vals))
for(i in 1:length(theta_vals)){
theta = theta_vals[i]
loss_vals = numeric(length = M)
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for(j in 1:M){
u = runif(n = n, min = 0, max = 1)
x = (1-uw)~(-1/theta) - 1
V_n = 1/mean(x)+1

loss_vals[j] = (V_n - theta) 2

}
risk_vals[i] = mean(loss_vals)
}
plot(theta_vals, risk_vals, col = "red", pch = 19,
xlab = expression(theta), ylab = expression(R(V[n],theta)))

o - %3
o ®,
Ne
S - Y

R(Vy, 6)

Figure 18: The risk function is obtained by computer simulation for the MLE W, of 6.

E(X) = p = 55 exists for § > 1 and Var(X) = o? = m which exists for § €
(2,00). Therefore, when 6 € (2,00), we can apply the CLT, which ensures the large sample

approximation of the sampling distribution of X, as

X”NN(Hil’n(H—lz)(G—Q))'

_ =1
Now we can approximate the sampling distribution of ¢(X,) = X,, + 1 by using first order
Taylor’s approximation and g(u) = % +1=0.
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which implies

1 1 _— 1 _— 1 9
Vn—X:n+1~;+1+(Xn—u) (—/7) =0+ (X"_m) (—(0—1)?)
Therefore, by the first order Taylor Approximation,
Ey(V,,) ~ 6
and the variance is obtained as
Vary(V,) ~ Ey(V, —6)° (0.22)
_ 1 \?2 .
_ K, <Xn _ ﬁ) 0—1) (0.23)
= Vary(X,) (0 —1)? (0.24)
1 6—1)3
— (1)t = ——L 2
ni—ne-2" "V =na=2 (0.25)

Therefore, by the application of Delta method

(0—1)°

V,=9(X,) ~N (9, n(9—2)) , for large n, 0 € (2, 00)

In the following code, the above approximation is verified by computer simulation.

M = 1000
theta = 4 # true value of theta
n_vals = c(5, 10, 30, 50, 100,500)
par (mfrow = c(2,3))
for(n in n_vals){
xbar = numeric(length = M)
g_xbar = numeric(length = M)
for(i in 1:M){
u = runif(n = n, min = 0, max = 1)
(1-u)~(-1/theta) - 1 # probability integral transform
xbar[i] = mean(x)
g_xbar[i] = 1/mean(x) + 1
}
hist(xbar, probability = TRUE, main = paste("n = ", n),
xlab = expression(bar(x[n])), breaks = 30)
curve(dnorm(x, mean = 1/(theta-1), sd = sqrt(1/(n*(theta-1)*(theta-2)))),
col = "red", lwd = 2, add = TRUE)
hist(g_xbar, probability = TRUE, main = paste("n = ", n),
xlab = expression(V[nl]), breaks = 30)

X
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= sqrt((theta-1)"3/(n*(theta-2)))),

col = "red", lwd = 2, add = TRUE)
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As the sample size increases, the sample mean X, is approximately normally dis-
2

tributed with mean p = ﬁ and variance Z- = m. Using the first order

Taylor’s approximation the sampling distribution of V, is obtained by computer

n
simulation. The sampling distribution is well approximated by the normal distri-
bution for large n. The approximate mean and variance of V,, is provided in the

main text.
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As the sample size increases, the sample mean X, is approximately normally dis-
2

tributed with mean p = ﬁ and variance °- = m. Using the first order

Taylor’s approximation the sampling distribution of V,, is obtained by computer

simulation. The sampling distribution is well approximated by the normal distri-

bution for large n. The approximate mean and variance of V,, is provided in the

main text.

c(5, 10, 25, 50, 100, 500)
s = seq(3, 20, by = 0.5)
= ¢(2,3))
# number of replications

for(n in n_vals){
risk_vals = numeric(length = length(theta_vals))
for(i in 1:length(theta_vals)){

theta = theta_vals[i]
loss_vals = numeric(length = M)
for(j in 1:M){
u = runif(n = n, min = 0, max = 1)
x = (1-u)~(-1/theta) - 1
V. n = 1/mean(x)+1

loss_vals[j] = (V_n - theta) 2

}

risk_vals[i] = mean(loss_vals)

}

plot(theta_vals, risk_vals, col = "red", pch = 19,
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xlab = expression(theta), ylab = expression(R(V[n],theta)),

main = paste("'n = ", n))
curve ((x-1)"3/(n*(x-2)), add = TRUE, col = "blue", lty =2,
lwd = 2)
}
n=>5
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Figure 21: The approximation of the risk function of V,, by the first order Taylor’s approxima-
tion. As n — oo, the approximations are accurate.

Comparing estimators V, and W,

n = 50
theta_vals = seq(0.1,5, by = 0.05)
M = 10000

risk_Vn = numeric(length = length(theta_vals))
risk_Wn = numeric(length = length(theta_vals))
for (i in 1:length(theta_vals)) {
theta = theta_vals[i]
loss_Vn = numeric(length
loss_Wn = numeric(length
for(j in 1:M){
u = runif(n = n, min = 0, max = 1)

M)
M)
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x = (1-u)~(-1/theta) - 1

V_n = 1/mean(x) + 1

W_n = n/sum(log(1+x))
loss_Vn[j] = (V_n - theta)”2
loss_Wn[j] = (W_n - theta) 2

}
risk_Vn[i] = mean(loss_Vn)
risk_Wn[i] = mean(loss_Wn)

}
plot(theta_vals, risk_Wn, col = "red", lwd = 2, type = "1",
xlab = expression(theta), ylab = expression(R(., theta)),
main = paste("'n = ", n))
lines(theta_vals, risk_Vn, col = "blue", lwd = 2)
legend("bottomright", legend = c(expression(W[n]), expression(V[n])), col = c("red", "blue")
lwd = c(2,2), bty = "n")

n= 50
< |
o
—~~
® —
~
oo~
o
— —Wn
o | — Vi
o

Figure 22: Comparison of the risk function of the method of moments and method of maximum
likelihood. It can be observed that the MLE has uniformly smaller risk than the
MoM estimator. Therefore, W, is a preferred estimator than V,,. Similar exercise
can be carried out for Y,, as well and we can find that MLE has outperformed both
the estimator. A natural question arises, is MLE the best among all estimators of
0. This will be answered in the next chapter.
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Unbiased Estimation and Search for the Best
Estimator

Search for the Best Unbiased Estimator

Till now we have learnt the following: We can compute the risk function of an estimator under
different loss functions. If the computation is not possible to execute analytically, we know
how to obtain the risk function by computer simulation. We have seen several examples, but
we should keep in mind that always the simulation from the population distribution may not
be an easy task. This idea will be explained later.

We can compute the maximum likelihood estimator of the parameters both analytically and
numerically.

Still we are not in a position to decide whether we have obtained the best estimator which
has the uniformly minimum risk against all estimators of the parameter. This is definitely
a difficult task and we can not even imagine the universe of all possible estimators to get
hold of one best estimator. In addition, even if we get hold of the best estimator, we are not
really sure whether this is the unique one or not. Let us try to address these questions in this
document.

Concentrating on Unbiased Estimators

To obtain the best estimator, we reduce our universe of all possible estimators to the set of
all unbiased estimators. Suppose that we have a random sample of size n from the population
PDF (PMF) f(z;0),0 € © C R. An obvious consequence of having the class of unbiased
estimators is that if ¥(X;,..., X,,) be an unbiased estimator of 6, then E,(¢) = 6 for all
0 € ©, which implies that under the squared error loss

Eg (4, —0)° = Eg (¢ — Eq (4,))° = Varg(¥,,).

We keep the subscript n to emphasize the important role of sample size in studying the
properties of the estimator. Therefore, for two unbiased estimators ¢, and ., ¢, will be a

better estimator of 0 if
Vary(y;,) < Vary(yr), for all 6.
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Uniformly Minimum Variance Unbiased Estimator

Let X, X,,..., X, be a random sample of size n from the population PDF (PMF) (J:]Q)

Suppose we are interested in estimating ¢(f), a function of . An estimator ¥} (X, ..., X,,) of
g(0) is defined to be a uniformly minimum variance unbiased estimator of g(0) if E, (1/1;‘1) =g(0)
for all @ € ©, that is, ¢} is unbiased and Vary (¢}) < Varg(¢,,) for any other estimator
¥, (X4, ..., X,,) of g(#) which satisfies E,4 (,,) = ¢(0) for all § € ©.

Search for the minimum bound

In general we may not be always interested in estimating the parameter @, rather we may be
interested in estimating some function of the parameter g(f), say. For example, suppose a
random sample of size n is available from the exponential distribution with rate parameter A
and we are interested in estimator P(X > 1) = e=* = g(\). The next discussion is generalized
for estimating some function of the parameter g(9).

In search of the best estimator for g(), some function of the parameter 6, we first try to find
the least possible risk attained by any unbiased estimator of g(f) under squared error loss
function. In other words, we want to compute a lower bound (sharp) for the variance of any
unbiased estimator 1 of g(6).

Cramer-Rao Inequality

Suppose that X, X,,...,X,, be a random sample (not necessarily IID) of size n from the
population PDF (PMF) f(z|0) and let 1)(X) be any estimator satisfying

P00 = [ GO0

and

Varg ($(X)) < oo,

then
2

(AEWX)
By (102 /X10))°)

Varg (¢,,(X)) =
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i IID Case

If the assumptions of the Cramer-Rao inequality are satisfied and, additionally, if
X1, Xy, ..., X, are IID with PDF f(z|6), then

Vargp(X) > EaW0)

", (£ 108 £(X16))”)

Consider estimating the mean parameter § from the exponential PDF given by f(z) =

%e_%,o < x < oo and B € (0,00). In this case g(8) = 3. Consider the MLE X, which

is an unbiased estimator of 8 and Varg (X7n) = %2 Let us compute the CR bound for any
unbiased estimator of 3. The denominator in the expression for C-R bound is computed

below:
o ((5oesx19) ) = (3 (~1ow- %)) 1)
— nE, (—; + ;)2 =SB, (X = ) (02)
- %ﬁf — % (0.3)

Therefore, the C-R bound is B—: and it is equal to Varg (X7n> Therefore, X,, must be the
UMVUE.

When C-R bound does not hold

Suppose that we have a random sample of size n from the following PDF

2L 0<z<
f(ﬂcw):{@

0, otherwise.

o Show that the MLE of 6 is Y,y = max(X,,..., X,,)-

« The MLE is not unbiased as E,(Y,,) = 522% # 6 for all § € (0, c0). However,

. 0
BlaSG(Yn> = Ee(Yn) —0= _2n T 1 — 0.

as n — 0o. Therefore, MLE is asymptotically unbiased.

o However, we can obtain an unbiased estimator which is a function of Y,, as 1,, = 2’2’21 Y.,
then M+l 2
n n
E = X =

146



10

11

12

13

14

15

16

17

o The variance of 9, is obtained as follows:
— By (V) = 27211292' )
n 2
— Vary (Y,) = E, (YnQ) — (Ep(Y,,))" = W-

2 2
- VG“TG (wn) = (275:;1> VC”"e (Yn) = 4n(€1+1)'

e Compute the C-R bound to verify that it is equal to %.
In the above problem, it is surprising to see that

6> 62
Va'l“@(rl,[)n) == m < @ == C-R bound.

e Check that the required condition which allows the interchange of the derivative with
respect to parameter # and the expectation does not satisfy for the given PDF.

e The result can be generalized further to observe that the support of the distribution
depends on the unknown parameter 6, which is (0, 6). For such distributions, the criteria
involving C-R lower bound can not be utilized to identify the best unbiased estimator.
In fact, when the support depends on the parameter, C-R bound theorem does not work

o Most of the book contains the Uniform(0, 8) example to demonstrate the above exception,
but, here we have a different example and you are encouraged to execute the above task.
In line with this concept, one can actually test this using computer simulation as well.
We can simulate the risk function of ¢}, using simulation and check that it completely
lies below the C-R bound. One can use the probability integral transform to simulate
from the given PDF.

par (mfrow = c(1,3))
theta_vals = c(2,4)
n = 100
for(theta in theta_vals){
u = runif(n = n, min = 0, max = 1)
x = theta*sqrt(u)
hist(x, probability = TRUE, main = bquote(theta == .(theta)), ylim = c(0, 2/theta+0.1), ce
curve (2*xx/ (theta~2) *(0<x) * (x<theta), add = TRUE,
col = "red", lwd = 2)

}
# simulation of risk function for n = 4
n=4

theta_vals = seq(1,4, by = 0.1)
risk_vals = numeric(length = length(theta_vals))
M = 1000 # number of replications
for(i in 1:length(theta_vals)){

theta = theta_vals[i]
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psi_n = numeric(length = M)
loss_vals = numeric(length = M)
for(j in 1:M){
u = runif(n = n, min = 0, max = 1)
x = thetaxsqrt(u)
psi_n[j]l = ((2#n+1)/(2#n))*max(x)
loss_vals[j] = (psi_n[j] - theta)~2
}
risk_vals[i] = mean(loss_vals)
}
plot(theta_vals, risk_vals, col = "red", pch = 19,
cex = 1.3, ylim = c(0, max(theta_vals) 2/(4#*n)),
xlab = expression(theta), ylab = expression(R(psi[n],theta)), main = paste("'n = ", n))
curve (x~2/(4*n*x(n+1)), col = "blue", lwd = 2, add = TRUE)
curve(x~2/(4#n), add = TRUE, col = "magenta",
lud = 2, 1ty = 2)
legend("topleft", legend = c("C-R bound"),
1ty = 2, col = "magenta", lwd = 2, bty = "n")
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Figure 1: The left two panels demonstrate the simulation of random samples from the given
probability density function using probability integral transform. A sample size of
n = 100 has been simulated for two values of 6. The overlaid exact PDF confirms
the effective use of the PIT for simulation. The right most panel shows the risk
function of ¢, which is obtained based on M = 1000 replicaions (red dots). The
true risk function (blue color) is added for reference. The C-R bound is shown
using the dotted mangeta colour. It is clear from the picture that the for the given
PDF, characterization of the best estimator based on the C-R bound can not be
established.

Therefore, we need to understand additional theories to characterize the UMVUE. We shall
now introduce two important concepts, Sufficient Statistics and Complete Statistics
which will help us address the gaps we encountered in characterizing the UMVUE.

Fisher Information Number

The following quantity which appears in the denominator of the lower bound for the variance
of any unbiased estimator is known as the Fisher Information

E, ((gglogﬂxmf) .
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This quantity tells us as the information number increases, we have more information about
the parameter 6. An alternative computation for the Fisher Information can be eased by the
following theorem.

! Computing Fisher Information

If f(z|0) satisfies

8o (ggtoes (X10)) = [ ] (108 £al0)) 1(510)]

, then

By ((felogfme))Q) - _F, (;’;mgﬂm)

! When the CR bound will be attained

Let X, X,, ..., X,, be independent and identically distributed random variables following
f(x]6), and f(x|0) satisfies the conditions of the Cramer-Rao theorem. Let £(f|x) =
H?Zl f(z;|0) denote the likelihood function. If W(X) = W (X4, ..., X,,) be any unbiased
estimator of g(6), then W (X) attains the Cramer-Rao Lower Bound if and only if

9 Jog £(61%),

aOW () - 9(6)) = =

for some function a(6).

Sufficient Statistics

Let X, X,,..., X, be a random sample of size n from the PDF (PMF) f(z|0), where 6 may
be a vector of parameters. A statistic 7'(Xy,..., X,,) is said to be a sufficient statistic if the
conditional distribution of (X4,...,X,,) given T" = ¢ does not depend on 6 for any value t of
T.

! Sufficiency principle

If 7(X)=T(Xy,...,X,,) is a sufficient statistic for #, then any inference about 6 should
depend on the sample X only through the value T'(X). That is, if x and y are two sample
points such that T'(x) = T'(y), then the inference about 6 should be the same whether
X =x of Y =y is observed.
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Exponential Family and minimal sufficient statistics

Exponential family of densities

A one-parameter family (the parameter § € © C R) of PDF (PMF) f(x|0) that can be

expressed as
F(@]0) = a(0)b(x)ec@4)

for all z € (—o0,00) and for all § € O, and for a suitable choice of functions a(-), b(-), ¢(-) and
d(-) is defined to belong to the exponential family or exponential class.

If we have a random sample of size n, from an exponential family, then the joint distribution
of the data can be expressed as follow:

F(,16) = (a(6))" {H b<xi>] exp [a(@)id(a@] .

n
=1

Worked examples

e G(a, f) family:
o e s
()5

where CL(O[,B) = P(O{)ﬂa7 b($> = ]-7 Cl<a76> = o= 17 02(a7ﬁ) - %7 dl(‘T) = log(a:) and
dy(x) = z. Therefore, (le X, Z?Zl log(X;)) is jointly minimal sufficient for (c, 3).

f(ala, B) = — a(a, B)b(a) exp (@~ 1) log(a) + (3 ) 2]

e Show that the following PMFs belong to the exponential family and identify the corre-
sponding minimal sufficient statistics

— binomial(n, §), n known.

— Poisson(\)

— Geometric(p)

— Discrete Uniform{1,2,...,0}, 6 € {1,2,3,...}.

o Identify which of the following PDFs belong to the exponential family and identify the
corresponding minimal sufficient statistics

- N(M, 02)

— B(a,b)

- G(a,b)

— Cauchy(u, o)
— Uniform(0, #)

o According to the factorization criteria, Z;lzl d (X;) is a sufficient statistic for 6.
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o However, the above statement can be made much stronger in a sense that the above

sufficient statistic 2?21 d(X;) is in fact minimal sufficient.

k-parameter exponential family

A family of PDF (PMF) f(z|6,,...,6,) that can be expressed as

f (.TL‘|91, LR 0k> = a<017 79k)b<$) exXp Z Cj(glv A 9k>dy<x)
J=1

for suitable choice of functions a(, ..., ), b(-), ¢;(,...,+) and d;(-), j = 1,2, ..., k is defined to
belong to the exponential family.

I Examples of distribution not belonging to the exponential family

o The family of Uniform(0, §) does not belong to the exponential family.

e The statement cane is true in general. That is, any family of densities for which
the range of the values were the density is non-negative depends of the parameter
0 does not belong the the exponential class.

Sufficiency and Unbiasedness

I Rao-Blackwell

Let W be any unbiased estimator of ¢g(#), and T be a sufficient statistic for §. Define
o(T) = E(W|T). Then,

« Ego(T) = g(0).
o Varyp(T) < Var,W for all §. The above two conditions imply that ¢(7) is uni-
formly better unbiased estimator of g(6).

The Rao-Blackwell theorem states a very important fact that conditioning any unbiased es-
timator on a sufficient statistic will result in a uniform improvement, so we need to consider
only statistics that are functions of a sufficient statistic in our search for the best estimators.

! Uniqueness of the best estimator

If W is a best unbiased estimator of g(6), then W is unique.
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Complete Statistics

! Complete family

Let f(t|f) be a family of PDFs or PMFs for a statistic 7'(X). The family of probability
distributions is called complete if Eyg(T") = 0 for all 6 implies P(g(X) =0) =1 for all 6.
Equivalently, T'(X) is a complete statistic.

Examples of Complete family

o Let (X;,X,,...,X,,) be iid Uniform(0,d) observations, 0 < 6 < oo. Then T'(X) =
max(Xy, ..., X,,) = X, is a complete statistic.
o Let X;,...,X,, be arandom sample from a population with PDF

f(z]0) =02°"1,0 <2< 1,0 <0< oo.

Find a complete sufficient statistics for 6.
o Let X;,X,,...,X,, bellD with geometric distribution

Py X=2)=01-0)*1r=12..,0<60<1.

Show that ZZL: X, is sufficient for #, and find the family of distributions of ) | X,. Check
whether the family is complete.

Complete statistics in the exponential family

Let X, X,,..., X, be iid observations from an exponential family with PDF or PMF of the
form

k
f(x]0) = a(0)b(x) exp (chw)dj(x)) :

where 6 = (64, ...,6,). Then the statistic
T(X) = (Z dy (X;), Z da(X;)s - s Z dk<Xi)>
=1 =1 =1
is complete if {(c;(6),cy(0), ..., c,(0)): § € O} contains an open set in R*.

o If Xy,...,X,, ~ N(6,0%). Here the parameter space (f,6?) does not contain a two-
dimensional open set, as it consists of only the points on the parabola.

The following theorem delineates the connection between complete sufficiency of an unbiased
estimator with the best unbiased estimator.
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Best unbiased estimator

! Important

Let T be a complete sufficient statistic for the parameter 0, and let ¢(7T) be any estimator
based only on T'. Then ¢(T') is the unique best unbiased estimator of its expected value.

Let us see an illustrative example. Suppose X, X, ..., X,, be IID f(z|0), where
f(z|0) = Gxe’ll(ovl)(x), 0<6<o0.
o First we observe that this PDF belongs to the exponential family as
f(xz]0) =0 x1xexp[(0—1)logz] = a(f)b(x)exp[c(f)d(x)]

o Therefore, Z?Zl log X, is complete sufficient (in fact minimal) statistic for 6.
o Compute the MLE of #: the likelihood function £(6) = 6™ (H?zl 2?71 and

1(0) =log £(6) = nlogf + (6 — 1) > log X,.
=1

Solving () = 0, we obtain the MLE of 6 as
—~ n

0n = Tn =T " 4 v
Zizl long

o First let us check whether é; is unbiased. We must note that the MLE is in fact a
function T,,, which is a complete sufficient statistic Z?:l log X;. We obtain the sampling

distribution of 5,:

— (Step - I) Show that Y; = —log X, ~ Exponential(rate = 0).
— (Step - II) Show that ¥V = Z:;l Y, = —Z;;l log X; ~ G (a=n,B=5).

_— n__nb
— (Step - IV) Show that the PDF of 6, is given by fr (2) = $5,0 < 2 < .

— (Step - V) Show that E, (7)) = n”—fl,n > 1. Therefore, T, is not an unbiased
estimator of 6.
— (Step - VI) We can get an unbiased estimator which is a function of 7}, which is a

function of a complete sufficient statistic as Tj; = 1T = —#Olg)(i. Therefore,

T is the best unbiased estimator.

— (Step - VII) Compute the variance of 7T}

— (Step - VIII) Compute the C-R bound for any unbiased estimator of # and check
whether Var, (T) = I,,(6)~! for all § € (0, c0).

Connection with the MLE
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Method of Maximum Likelihood

A motivating example

We have a random sample (X, X5, ..., X,,) of size n from the Geometric(p) distribution, whose
probability mass function is given by

PX=2z)=(01-p)*1p ze{l,2, ..}

The random variable X represents the number of throws required to obtain the first success if
we continue tossing a coin with probability of head p until the first head is observed.

Suppose that a company produces a large number of identical coins. We are interested in
estimating the probability of head. The following experimental procedure is planned to be
followed to estimate the true probability of head. Out of a large number of coins n coins have
been chosen and they are numbered as {1,2,...,n}. For each i € {1,2,...,n}, ith coin has
been kept on tossing till the first head appears. X, denotes the number of throws required to
observe the first head for the ith coin.

Suppose that n = 5 and the above experiment gave the following observations:
[1] 46 112

Let us compute the likelihood of observing the above sample as a function of p as follows:
P(X;=4,X,=6X;=1,X,=1,X;,=2)=(1—p)%".

The sample space of (X, ..., X;) is given by the following set:
{1,2,3,..3° = {(zy, ..., z5): x; € {1,2,3,...},1 < i < 5}

Each of the points in this sample space has a positive probability of being included in the
random sample of size 5. However, since the given sample is observed, is not unreasonable to
consider that it has significantly larger likelihood. In other words, we ask the question, for
what value of p € (0,1), the probability of observing the given sample is as large as possible?
To answer this, we can express the likelihood of given sample as a function of p, which is here
given by

£L(p) = (1—-p)? xp°, p€(0,1).
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We want to identify that for what value of p, the likelihood of the observed sample is maximum,
that is p*, so that £(p*) > £(p) for all p € (0,1). It boils down to a maximization problem.
Instead of maximizing £(6), we can maximize log £(6), which are referred as the likelihood
and the log-likelihood function, respectively.

l(p) = log £(p) = 9log(1 — p) + 5logp.

d L9 5
p (log £(p)) =1'(p) = 1-p + .

Equating '(p) = 0, we get p* = 2 and it is easy to verify that I”(p*) < 0.

par (mfrow = c(1,2))

p_star = 5/14

curve ((1-x)~9%x~5, 0.01, 0.99, col = "red", lwd = 2,
xlab = "p", ylab = "L(p)")

points(p_star, 0, pch = 19, col = "blue", cex = 1.4)

abline(v = p_star, col = "grey", lty = 2, lwd = 3)

curve(9xlog(1-x) + b*log(x), col = "red", lwd = 2,
xlab = "p", ylab = "1(p)")

points(p_star, O, pch = 19, col = "blue", cex = 1.4)
abline(v = p_star, col = "grey", lty = 2, lwd = 3)
o
‘—|_
— |
o | Q 4
~ © —_ I
2 o S -
- O :’o
— ('T)_
O_ o_
o —
T - 0 Y
8 I I I I I I I I I I I I
0.0 0.4 0.8 0.0 0.4 0.8
p p

Figure 1: The maximum likliehood estimate of p is 15—4. The left panel represents the likelihood
function £(p) and the right panel depicts the log-likelihood function log £(p). The
5

vertical corresponds to the p* = 7%, at which the function is maximum.

Based on the above data set, we obtained the estimate of the probability as 1—54. It is intuitively
clear that this estimate is subject to uncertainty. By this statement, I essentially mean that if
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the this experiment would have been carried out by ten different individuals, then we would
have obtained ten different samples of size 5. Certainly, the value of p* is not expected to be
the same for all the samples. Therefore, we are interested in computing the risk associated
with this estimate. To formalize it further, let us try to obtain some explicit expression for
p.

Suppose that z,,z,, ..., z, are realizations of the random sample (X, X, ..., X,,). Then the
likelihood function is given by

n

Lp)=][P(X;=2,) =1 —p=p"0<p <1,

i=1
and the log-likelihood function is given by
l(p) = (Z x; — n) log(1 —p) + nlogp.

I'(p) =0 gives p* = o = (z,,)"!. Therefore the maximum likelihood estimator of p is given
by '

1
Dn = X:n
Our goal is to estimate the risk function
1 2
XTL

! The likelihood and the log-likelihood

If X;,X,,...,X,, be arandom sample of size n from the population with PDF (PMF)
f(z]0), then the likelihood function £, : © — [0, 00) defined as

i=1
It is important to note that the likelihood function is the joint PDF (PMF), but considered
as a function of #, and certainly the statement f@ £,,(0)df = 1 not necessarily be true.

The log-likelihood function is defined by

1,,(0) =1log £,,(0), 6 € O.

Is the estimator consistent!

A desirable property of an estimator is that as the sample size increases, the sampling dis-
tribution of the estimator should be more concentrated about the true parameter value. We
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should not forget that an estimator is a random quantity which is subject to sampling vari-
ation. In this case, before going to some mathematical computation, we first check whether
this is indeed happening or not for p,,, the MLE of p. We employed the following scheme to
understand the behavior of p, as n — oc:

 Fix sample size, n € {1,2,3,...,1000}.
For each n € {1,2,3,...,1000}

— Simulate X, ..., X,, ~ Geometric(py).
— Compute X,

=1
— Compute p, = X,, .

Plot the pairs (n,p,),n € {1,2,...,1000}.
o Do the above experiment for different choices of p, € (0, 1).

p=0.4
n_vals

1:1000
pn_hat = numeric(length = length(n_vals))
for(n in n_vals){

x = rgeom(n = n, prob

pn_hat[n] = 1/mean(x)
}
plot(n_vals, pn_hat, type = "1", col = "grey", lwd = 2,

xlab = "sample size (n)", ylab = expression(widehat(p[n])))

abline(h = 0.4, col = "blue", lwd = 3, 1ty = 2)

p)+1

158



0.4 0.6

—~
Pn

0.2

I I I I I I
0 200 400 600 800 1000

sample size (n)

Figure 2: As the sample size increases, the MLE p,; converges to the true value of p. The reader
is encouraged to perform the simulation experiment for various choices of p € (0, 1).
The horizontal blue dotted line indicates the true probability p.

The statement can also be established theoretically. From the Weak Law of Large Numbers,
we know that X, — E(X) = ]% in probability as n — co. If we choose g(x) = 1, which is a
continuous function, then

I Continuous function and convergence in probability

P P . . .
If X,, —» X, then g(X,,) — ¢g(X), where g(-) is a continuous function.

Simulating the risk function of the MLE of p

The problem is to compute the risk function for different choices of p € (0,1),

W(Xinil,p>,0<p<1.

The following steps have been performed using R Programming to approximate the risk func-
tion of p,, under the squared error loss function, which is also referred to as the Mean Squared
Error (MSE) of p,,.
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 Discretize (0,1) as (pq, ..., pr)-
o Fix sample size n
e Fix M, the number of replications

For each p € {py,...,pr}

— For each m € {1,2,..., M}
* Simulate X, X,, ..., X,, ~ Geometric(p).

* Compute loss [, = (

\,E/ 5““ 3
Il

gl=

\g|

ﬁ g

S.N

— Compute the risk X <;,
¢ Plot the pairs of values {p,fk (%,p)} 0 €4{pys- 0L}
¢ Repeat the above exercise for different choices of n

par (mfrow = c(2,3))
n_vals = c(5, 10, 30, 50, 100, 500) # different sample sizes
M = 5000 # number of replications
prob_vals = seq(0.01, 0.9, by = 0.01)
for(n in n_vals){
risk_pn_hat = numeric(length = length(prob_vals))
for(i in 1:length(prob_vals)){
p = prob_vals[i]
loss_pn_hat = numeric(length = M)
for(j in 1:M){
x = rgeom(n = n, prob = p) + 1
loss_pn_hat[j] = (1/mean(x)-p)~2 # compute loss
}

risk_pn_hat[i] = mean(loss_pn_hat) # compute risk (average loss)

b
plot(prob_vals, risk_pn_hat, col = "red", xlab = "p",
ylab = expression(R(widehat(p[nl),p)),

main = paste("n = ", n))
lines(prob_vals, prob_vals 2*(1-prob_vals)/n,
col = "blue", lwd = 3, 1ty = 2) # add true risk function
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Figure 3: The approximation of the risk function of the MLE of p based on random sample of
size n from the Geometric(p) distribution. The evaluation is carried out based on
M = 1000 replications under the squared error loss function.

For this problem it is almost impossible to compute the risk function analytically. Let us try
to obtain an approximation of the risk function which performs well for large n. Consider
g (z) = 1. Expanding the Taylor’s Polynomial of g(X,,) about % gives

1%~ o (p) e (%) ()

p+ (X—2) ().

&

From the Central Limit Theorem we have

— a 11—
XnNN<77 2p>7
p pn

therefore, for large n, Var (X7n) R 1;—5. Taking expectation on both sides of the Taylor’s
polynomial we see that

E[g(X,)] ~p

and the approximate risk is given by
2 9 ,

X (Xap> =E (X—p) %E(Xn_7> (—pQ)Q%Var (Xn)p4= %

n n
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Therefore

1 1 —p)p?
R <,p> ~ %, for large n.
X, n
In the Fig, the simulated risk function is overlaid with the approximate risk function obtained
the Taylor’s approximation (first order). It can be noted that for large n, the approximations
are remarkable close to the true risk function.

It is interesting to observe that the risk is different at different values of the parameter p.

Therefore, if the estimate of the parameter is p*, then the estimated risk will be %,

which is approximately equal to &;32 for p* = 1% and n = 5. However, one may possibly

want to get an upper bound of the risk which is independent of the choices of p, which can be
obtained by maximizing the risk function with respect to p.

0

d [A=pp*] _2p—3p* _
dp n N N

gives p* = % Therefore,

—2)(2
maxﬂ(Xinil,p> _ (1-3) () _ 4 .
pe(0,1)

Therefore, for large n

1 4
< — .
R (Xn ,p) < 5o for all p € (0,1)

One might ask the question that what would be the minimum required sample size so that the
maximum risk would be less than some small number e = 0.001 (say). From the inequality, we

can obtain -2 < 0.001 implies n > m = 148.1481. Therefore, at least a sample size of

27n
n > 149 would be required to ensure the accuracy of the estimate less than 0.001. A general
formula can be written as n > [%6] + 1 for a given accuracy level € > 0, where [z] represents

the greatest integer < x.

A not so common discrete distribution

The discrete uniform distribution on the set {1,2,...,0}, where § € © = {1,2,3,...} is given

by
1
sxe{l,2,..,0
P(X=z)=<" { !
0, otherwise.
Suppose, we have a random sample of size n, (X;,X,,...,X,,) are available and let Y, =
max(X,..., X, ). We are interested in estimating the parameter # which can take any value

from the countable set {1,2,...}. The likelihood function is given by

D), 0 Wayn Ly 2,000
£(0) =
0, otherwise
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In addition, it is easy to understand that the likelihood function attains it’s maximum at y,,.

theta = 6
n=>5
x = sample(l:theta, size = n, replace = TRUE)
y_n = max(x)
Lik = function(theta){
if (theta<y_n)
return(0)
if (is.integer(theta) && theta>=y_n)
return(theta™(-n))

}
theta_vals = 1:10
Lik_vals = numeric(length = length(theta_vals))
for(i in 1:length(theta_vals)){

Lik_vals[i] = Lik(theta = theta_vals[i])
}
plot(theta_vals, Lik_vals, type = "h", pch = 19, col = "grey",

cex = 1.4, ylab = expression(L(theta)), xlab = expression(theta))

points(theta_vals, Lik_vals, pch = 19, col = "blue", cex = 1.3)
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Figure 4: The likelihood function for the parameter 6 based on a random sample of size n = 5
from the discrete uniform distribution on the set {1,2,3...,60 = 6}. The sample
function in R has been used to simulate the observations from the discrete uniform
distribution.
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An experiment with the continuous distribution

Suppose that we have a random sample (X1, ..., X,,) of size n from the exponential distribution
with rate parameter A\. Let X ~ Exponential(A) be the population distribution and the
parameter space is © = (0,00). We are interested in estimating the probability P(X < 1).

First we make the observation that the desired quantity ¢» = P(X < 1) is a function of A,
which is given by

1
1[1:/ e Mdr =1—e A,
0

The original parameter A € (0,00), which implies that ¢» € (0,1). As A = 00, ¥ — 1 and as
A — 0,9 — 0. Our aim is to estimate ¢ based on the observations which is a function of A.
Let us understand this problem step by step. First we need to estimate the parameter A and
then we can use it to approximate 2.

Computation of MLE of the parameter

Suppose that (x,z,...,x,) be the collected sample of size n: - The likelihood function is
given by

7

L) = flx), 9,001, |A) = [ Ae0.

=1

The function is explicitly written as

Are AL T 0 < A
£()\):{ e , <AL

0, otherwise.

The log-likelihood function is I(\) = log £(\) is given by

IA) =nlogA—A> ;.
i=1

Equating I’(\) = 0, we obtain \* = Zn” — = ;%v inverse of the sample mean. It is easy to see
i=1%i n
that {”(A\) < 0 for all A € (0,00), therefore, I”(A*) < 0. Therefore, the Maximum Likelihood

Estimator (MLE) of the parameter A, based on a sample of size n, is given by

Here T would like to make an extremely important point which many people miss. It is
important to note that in the above discussion \* is a fixed quantity which is computed
based on a single realization of the sample (Xi,...,X,,), whereas X; is a random quantity
which can be characterized by a probability distribution.
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Computation of MLE of the function of parameter

To obtain the estimator of 1, based on the above sample, a natural choice of the estimator of
1) is given by

—_ ~

wn =1- 67)\“7
where X; is the MLE of A. The following observations we have:

« The MLE ) is a function of the sample mean X,,.
o For the sample mean X,,, we have large sample normal approximation due to the Central
Limit Theorem. The underlying population has finite variance, therefore, CLT holds. It

would be interesting to see whether the MLE 5\; = %, a function of X,, follows some

approximate distribution at least for large n. Also, can this result be extended for QZ; , a
nonlinear function of the MLE?
P —~ P
o By the WLLN, we know that X, — E(X). Is it true that A\,, — X for all A € (0, 00).

—_—

Also, can this result be extended for 1,,, a nonlinear function of the MLE?

Convergence of Estimators X\n and @; for large n

Using the Weak Law of Large Numbers, we know that

X, LX) = %

Our claim is that

— P — P

Ap = A, Y, — .
Before going into the theoretical justifications, let us see by computer simulations, how these
estimators behaves as the sample size n increases. We implement the following algorithm:

e Fix A € (0,00)
Fix n € {1,2,...,1000}

For each n

— Simulate X, X,, ..., X,, ~ Exponential(\)
— Compute X,

1
X?’l
1—e"

— Compute 5\;
— Compute 9,, = An

o Plot the pairs (n,X7n> ,n € {1,2,...,1000}
¢ Plot the pairs (n,X;) ,n € {1,2,...,1000}.
o Plot the pairs (n,@;) ,n€{1,2,...,1000}
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par(mfrow = c(1,3))
lambda = 2

psi = 1-exp(-lambda)

n_vals = 1:1000

sample_means = numeric(length = length(n_vals))
lambda_hat = numeric(length = length(n_vals))
psi_hat = numeric(length = length(n_vals))

for(n in n_vals){

rexp(n = n, rate = lambda)
sample_means [n] = mean(x)
lambda_hat[n] = 1/sample_means[n]
psi_hat[n] = 1 - exp(-lambda_hat[n])

}

plot(n_vals, sample_means, col = "red", yla

type = "1", xlab = "sample size (n)",
expression(bar(X[n])), cex.lab = 1.5,
1.5)

X =

— nn
b

main =
cex.main =

# rate parameter
# true probability

# increasing sample size

# estimate of the rate parameter
# estimate of the probability (psi)

# Sampling distribution of MLE of lambda

abline(h = 1/lambda, 1ty = 2, col = "blue", lwd = 3)

plot(n_vals, lambda_hat, col = "red", ylab = "",
type = "1", xlab = "sample size (n)",
main = expression(widehat(lambda)), cex.lab =
cex.main = 1.5)

abline(h = lambda, lty = 2, col = "blue", lwd = 3)

plot(n_vals, psi_hat, col = "red", ylab = "",
type = "1", xlab = "sample size (n)",

expression(widehat (psi[n]) ==
cex.main = 1.5)

abline(h = psi, 1ty = 2, col = "blue", lwd = 3)

main =
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# Consistency of MLE of lambda

1.5,

# Consistency of MLE of psi

, cex.lab = 1.5,
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Figure 5: As the sample size n increase, sample mean converges to the population mean
(WLLN) (left panel), the MLE converges to the true value of the parameter (middle
panel), the function of the MLE converges to the function of the parameter (right
most panel).

The figures clearly suggests that all the estimators converge to the true value as n — oo. This
is due to the fact that both \,, and ,, are continuous transformation of X,,. Let us now look
into the large sample approximation of the sampling distributions of \,, and ,,.

Large sample approximations

We recall that as the sample size n — oo, X,, can be well approximated by the normal
distribution. More specifically, in our context, for large n,
— 1 1
e (k)
" A An

as for the given population E(X) = % and Var(X) = % Before going into some theoretical

justifications, let us visualize the sampling distribution of X; and 17); for different choices
(ascending order) of n. The simulation scheme is already demonstrated for the Geometric(p)
distribution in the previous section.
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par(mfrow = c(1,3))

M = 1000 number of replications
n = 500 sample size
lambda = 2 true rate parameter

sample_means = numeric(length = M)
lambda_hat = numeric(length = M)
psi_hat = numeric(length = M)

for (i in 1:M) {

store sample means
store MLEs of lambda
store MLEs of psi

H H H O O H

x = rexp(n = n, rate = lambda) # simulate from population
sample_means[i] = mean(x) # compute sample means
lambda_hat[i] = 1/mean(x) # compute MLE of lambda
psi_hat[i] = 1 - exp(-lambda_hat[i]) # compute MLE of psi

}

hist (sample_means, probability = TRUE,

main = paste("n = ", n), xlab = expression(bar(X[n])), cex.lab = 1.3)
curve (dnorm(x, mean = 1/lambda, sd = 1/sqrt(lambda”2*n)),
add = TRUE, col = "red", lwd 2)

hist(lambda_hat, probability = TRUE,
main = paste("n = ", n), xlab = expression(widehat(lambda[n])), cex.lab = 1.3)
curve(dnorm(x, mean = lambda, sd = sqrt(lambda~2/n)),
add = TRUE, col = "red", lwd = 2)

hist(psi_hat, probability = TRUE,

main = paste("n = ", n), xlab = expression(g(widehat(lambda[n]))), cex.lab = 1.3)
points(psi, O, pch = 19, col = "red",
cex = 1.4)

curve (dnorm(x, mean = psi, sd = sqrt(lambda”2*exp(-2*lambda)/n)),
add = TRUE, col = "red", lwd = 2)
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Figure 6: The sampling distribution for X,,, X;, @; are obtained based on M = 1000 repli-
cations. The value of n is kept are n = 500 and it can be observed the sampling
distributions take bell shaped nature. The parameter A = 2 is consdiered for the
simulation purpose. Therefore, the true value of ¢ = 1 — e2? = 0.8646647, which is
marked as a red dot in the right most panel.

The figure clearly suggested as the sample size n increases, the sampling distributions of the
MLE and the function of MLE are well approximated by the normal distribution. Therefore,
if we can compute the mean and variance of the estimators at least for large n, we can get the
normal approximation of these histograms.

Normal approximation of X:L

Consider X; =g (X7n) = —. Taking Taylor expansion of first order about the expected value

oinn:%)\,weget

L
XTZ

o ~a(2) () (1)

Since E (X7n) = %, we get
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Therefore, the MLE 5\; is asymptotically unbiased estimator of A\. To compute the variance,
we observe that

o g - 2 2 4 2
Var ()\n) %E()\n—/\)z wE(Xn—i> (g’ <i>> = % = %

Therefore, we can overlay a normal distribution on the simulated histograms approximating
the sampling distribution of A,, and check whether

o 2
A,ﬁM/(A,A).
n

(5\;) , (say), where

In the next phase, we can approximate the mean and variance of @/b; =g
g(z) = 1—e*. Considering the first order Taylor’s approximation of g (5\;) about the expected

value of X;, which is approximately equal to A for large n, we obtain:

g9 (A) =9+ (X =A) g’
Asn — o0, E (’Q/ZJ;) =E [g (X;)] ~ g(A) =1 — e = 1), therefore, @/ZJ; is an asymptotically
unbiased estimator of y. The approximate variance of 17);, for large n is obtained as

— 2

Var (07) ~ B (6, — ) =E[g(%) =] ~E(X, =) (¢ (\)*.

)\2672)\

This gives Var (17);) A . Therefore, we can claim that

— — a 22 —2A
1/1n:1—e)‘nNN<1—e>‘, ¢ )

n

Visualization for different choices of n

In the above approximations, we have approximated the sampling distribution of X, X; and

—

¥, =g\,) =1—e > for a fixed value of n using the normal distribution. In the following
codes, we visualize the sampling distribution for different choices of n. The histograms are
overlaid with the normal distribution with the mean and variance computed by the Delta
method.

n_vals = c(5, 10, 50, 100, 500, 1000)
par (mfrow = c(2,3))

M = 1000

lambda = 2

for(n in n_vals){
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sample_means = numeric(length = M)
lambda_hat = numeric(length = M)
psi_hat = numeric(length = M)
for (i in 1:M) {
x = rexp(n = n, rate = lambda)
sample_means[i] = mean(x)
lambda_hat[i] = 1/mean(x)
psi_hat[i] = 1 - exp(-lambda_hat[i])
}
hist(sample_means, probability = TRUE,

main = paste("n = ", n), xlab = expression(bar(X[n])), cex.lab = 1.3)

curve(dnorm(x, mean = 1/lambda, sd = 1/sqrt(lambda”2*n)),
add = TRUE, col = "red", lwd = 2)

hist(lambda_hat, probability = TRUE,

main = paste("n = ", n), xlab = expression(widehat(lambda[n])), cex.lab = 1.3)

curve(dnorm(x, mean = lambda, sd = sqrt(lambda~2/n)),
add = TRUE, col = "red", lwd = 2)

hist(psi_hat, probability = TRUE,

main = paste("n = ", n), xlab = expression(g(widehat(lambda[n]))), cex.lab = 1.3)

points(psi, 0, pch = 19, col = "red",
cex = 1.4)

curve(dnorm(x, mean = psi, sd = sqrt(lambda”2*exp(-2*lambda)/n)),
add = TRUE, col = "red", lwd = 2)
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Figure 7: As the sample size n increases, the sampling distributions of the functions of the
data points are well approximated by the normal distributions.
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Figure 8: As the sample size n increases, the sampling distributions of the functions of the
data points are well approximated by the normal distributions.
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Figure 9: As the sample size n increases, the sampling distributions of the functions of the
data points are well approximated by the normal distributions.

1 Invariance property of MLE

Suppose X1, ..., X,, be a random sample from the population PDF (PMF) f(x|0). If 5;
be the MLE of 6, then for any function g(6), the MLE of ¢(0) is g (Gn)

Approximation of the Risk function

In the language of risk function, we can write that for large n,
2 )\2

R(XA) =E(X, =) ;

However, for the estimator 1/1/\“ , we have computed the risk as a function of A only. By expressing
A in terms of # (it is a monotone transformation from A — 1) as A = —log(1 — %)), we obtain

the approximate risk function as

2 (%Tn,d}) - (—(L—1) l:;g(l — ¢>)2, for large n,1 € (0,1).

The verification of the above expression can be performed by computer simulation. Instead of
discretizing the range of A, discretize the possible parameter space corresponds to ¢ € (0, 1).
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par (mfrow = c(2,3))
n_vals = c(5, 10, 30, 50, 100, 500)

M:

psi_

5000
vals = seq(0.01, 0.9, by = 0.05)

for(n in n_vals){

risk_psi_hat = numeric(length = length(psi_vals))

for(i in 1:length(psi_vals)){

3

plot(psi_vals, risk_psi_hat, col = "red", xlab = expression(psi),

lines(psi_

psi = psi_vals[i]
lambda = -log(l-psi)
loss_psi_hat = numeric(length = M)
for(j in 1:M){
x = rexp(n = n, rate = lambda)
psi_hat = l-exp(-1/mean(x))
loss_psi_hat[j] = (psi_hat-psi)~2
}

risk_psi_hat[i] = mean(loss_psi_hat)

ylab = expression(R(widehat (psil[n]),psi)),

main

col = "blue", lwd = 3, 1ty = 2)
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Figure 10: As the sample size n increases, the risk function & (1,7);,11}) can be well approx-
imated by the approximate risk obtained by the first order Taylor’s polynomial
approximation. The approximated risk function based on M = 1000 replications is
shown in red color, which is the approximation of the true risk function based on
simulation. The approximation of the true risk function by the first order Taylor’s
polynomial is shown in blue dotted line. It is evident that as the sample size in-
creases, the approximation is very close.

I Delta Method

Let W,, be a sequence of random variables that satisfies
\/E(Wn - 9) ~ N(0702)

in distribution. For a given function g(-) and a specific value of § € ©, suppose that g’(6)
exists and ¢’(0) # 0. Then

Vilg(W,) = g(0)] & N (0,02 [g'(0)]),

in distribution.
The basic idea is that as the sample size increases, the function of asymptotically nor-
mally distributed random variables can also be approximated by the normal distribution
mean and variance can be easily computed by using the first order Taylor’s polynomial
approximation.

175



! Comparing Risk Functions

Suppose in the same problem of estimating ¢» = P(X > 1), another alternative estimator
— 1
=— I(X.>1
=y 21Xz

is suggested, where the quantity I(X > 1) is defined as

LX>1
I(X21>:{0’X;1

Therefore, E; basically the proportion of observations which are greater than or equal to 1.
It is easier to check that E (5n) =1 and Var (fn) = @ Using computer simulation,

simulate the risk function & (g; ) 1/1) and compare it with R (@; , w) at different values of
¥ € (0,1) for different sample sizes n. Write your conclusion in simple English language.

Multi-parameter optimization

In the previous sections, we have learnt that how one can obtain the sampling distribution of
the MLE and also tested whether the MLE converges in probability to the true parameter value
by using computer simulations. Many real life problems are modeled by probability distribu-
tions which is parameterized by more than one parameters, for example, N (u,0?), B(a,b),
G(a,b), etc. In this section, we consider the computation of the MLE for multiparameter
probability distributions.

Suppose that we have a random sample (X, X, ..., X,,) of size n from the normal distribution
with parameters p and o?. Our goal is to obtain the Maximum Likelihood Estimators of ;1 and
0?2 based on the sample observations and study properties of these estimators. The parameter
space is

O ={(u,0?%): —o0< pu<o00,0<0<o0}

n = 30
mu = 3
sigma2 = 1.5

x = rnorm(n = n, mean = mu, sd = sqrt(sigma2))
hist(x, probability = TRUE)
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Figure 11: A random sample of size n = 30 has been simulated from the normal distribution
with mean ;1 = 3 and variance 0? = 1.5 for demonstration. The corresponding
histogram is used for graphical display of the data.

Likelihood function

If (xq,24,...,x,) be a fixed observed sample of size n, then the likelihood function is given
by
_n n 2
L(p,0%) = (2m0?) * ¢ 507 Lica (Timh) ,—00 < it < 00,0 < o < oo.

The log-likelihood function is given by

n 1 n 2
L, 0%) =log £(p, 0%) = — log(2m0®) — — ; (z; — )"

- Compute g—fL and % and set them equal to zero. - Solve the above system simultaneously

and obtain the critical points x* and 2. - Show the the the following matrix

9%l 921
_ op? Oudo?
H = 9%l 921
opdo?  9(02)?

is negative definite when the partial derivatives are evaluated at (u*, 02*). This can be checked
by ensuring the following two conditions:

Hy <0, and det(H) = Hy Hyy — (Hyy) > 0.
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In the following, we plot the likelihood function and the log-likelihood function as a function
of the parameters p and o2.

Likelihood = function(mu, sigma?2){
(1/ (sigma2*2*pi) "~ (n/2)) *exp (-sum(x-mu) "2/ (2*sigma2))
}

LogLikelihood = function(mu, sigma2){
log(Likelihood(mu = mu, sigma2 = sigma2) + 0.5)
}

mu_vals = seq(2, 4, by = 0.1)
sigma2_vals = seq(l, 1.5, by = 0.1)

Lik_vals = matrix(data = NA, nrow = length(mu_vals),
length(sigma2_vals))
LogLik_vals = matrix(data = NA, nrow = length(mu_vals),
ncol = length(sigma2_vals))
for(i in 1:length(mu_vals)){
for(j in 1:length(sigma2_vals)){
Lik_vals[i,j] = Likelihood(mu = mu_vals[i],
sigma2 = sigma2_vals[j])
LogLik_vals[i,j] = LogLikelihood(mu = mu_vals[i],
sigma2 = sigma2_vals[j])

ncol

}
}
par (mfrow = c(1,2))
persp(mu_vals, sigma2_vals, Lik_vals, theta = 60, col = "yellow", )
persp(mu_vals, sigma2_vals, LogLik_vals, theta = 60, col = "yellow")

Figure 12: The shape of the likelihood and the log-likelihood function (surface) which is a
function of p and 2. The likelihood surface clearly indicates that there is unique
maximuim.
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From the computation, we observed that the MLE of the x4 and o? are given by

—

n
=X, o2=->(X,-X,)
i—1
Given an estimators, the following questions immediately appear, such as (a) are these esti-
mators unbiased? (b) are these estimators consistent, (c) are these estimators are the best
choices under some given loss function? We shall not address all these questions here only, but,
certainly show how we basic properties of these estimators can be checked and when feasible,
we shall also compute the exact sampling distribution of these estimators.

SN

At the first step, let us check whether as the sample size increases, the MLEs converge to the
true parameter values. Mathematically, whether the following statements true:

X, —u, and 02— o0”

The following simulation will help us to understand whether the above statements are true.

» Fix sample size n € {2,3,...,1000}.
o Fix u = py and 02 = o3.
e For each n
— Simulate X, Xy, ..., X,, ~ N (g, 02).
— Compute X,, and o2
¢ Plot the pairs (n,Xin) and (n,%)
« Add a horizontal straight line to the plots at u, and o3, respectively.

2:1000
numeric(length = length(n_vals))
sigma2_hat = numeric(length = length(n_vals))
for(i in 1:length(n_vals)){
n = n vals[i]
x = rnorm(n = n, mean = mu, sd = sqrt(sigma2))
mu_hat[i] = mean(x)
sigma2_hat[i] = (1/n)*sum((x-mean(x))~2)

n_vals
mu_hat

}
par (mfrow = c(1,2))
plot(n_vals, mu_hat, col = "grey", lwd = 2,

xlab = "sample size (n)", ylab = expression(widehat(mul[n])))
abline(h = mu, col = "blue", lwd = 3, 1lty = 2)
plot(n_vals, sigma2_hat, col = "grey", lwd = 2,

xlab = "sample size (n)", ylab = expression(widehat(sigmal[n]~2)))
abline(h = sigma2, col = "blue", lwd = 3, 1lty = 2)
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Figure 13: The simulations cleraly indicates that as the sample size increases, MLEs are getting
highly concentrated about the true values, which is a signature of the convergence
in probability. The simulation has been carried out by fixing the population distri-
bution as N (u = 3,02 = 1.5).

To quantify the uncertainty associated with the MLE, we can either obtain the exact sampling
distributions of X, and EZ, or we can approximate the standard error of these estimators
at different true values by computer simulations by fixing n. Let us fix the value of n and
simulate M = 1000 realizations from the sampling distributions of the MLEs and visualize

their distribution through histograms.

n = 10 # sample size
M = 1000 # number of replications
mu_hat = numeric(length = M)
sigma2_hat = numeric(length = M)
for(i in 1:M){
x = rnorm(n = n, mean = mu, sd = sqrt(sigma2))
mu_hat[i] = mean(x)
sigma2_hat[i] = (1/n)*sum((x-mean(x))~2)

+
par (mfrow = c(1,2))
hist(mu_hat, probability = TRUE, main = paste("n = ", n),

xlab = expression(widehat(mul[n])), breaks = 30)
curve(dnorm(x, mean = mu, sd = sqrt(sigma2/m)),
add = TRUE, col = "red", lwd = 2)
hist(sigma2_hat, probability = TRUE, main = paste("n =", n),
xlab = expression(widehat(sigmal[n]~2)), breaks = 30)
dist_sigma2_hat = function(x){
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num = exp(-n*x/(2*sigma2))*(n*x/sigma2)” ((n-1)/2-1)*n*(x>0)
den = gamma((n-1)/2)*2~((n-1)/2)*sigma2
return(num/den)

}
curve(dist_sigma2_hat(x), add = TRUE, col = "red", lwd = 2)

n= 10 n= 10
—_ 4 o)
O | \I © RN
> ° - > 4
5 | i
<
(] < (] —
o O — e o
o ] o ]
© T T T T 1 © | | | |
15 25 3.5 0 1 2 3 4
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Hn 0,

Figure 14: The sampling distribution of the MLEs of 1 and o2 have been visualized through
histograms based on M = 1000 replications. The reader is encouraged to update
the code and visualize the histograms for different choices of n. The exact sampling
distributions are overlaid on the hisgraoms.

In the classroom, Sangeeta has pointed out that sample mean would in fact follow the normal
distribution due to the Central Limit Theorem (n large). The statement is indeed true.
However, since the sampling has been carried out from the normal distribution, the sample
mean has an exact normal distribution with mean p and variance %2 for every n (not only for
large n), which can be proved using the MGF technique, shown below:

2
o
)t

fon(t) = ... fill the gap - = e“H%( ) ,—00 < t < 00.

While for the sample mean, the computation is apparently straightforward application of the
MGF. For the the MLE of o2, a slightly lengthier calculations is required. In the follow-
ing subsection, we list main results related to the sampling from the normally distributed
population.
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! Sampling from the normal distribution

Let X, X,, ..., X,, be a random sample of size n from the N (u,o?) population distribu-
tion. Then

. g and S2 are independent random variables.
X, hasa IV ( ”—2) distribution.

w has a x2_; distribution with n — 1 degrees of freedom.

Reader is encouraged to see the proofs in (Casella and Berger 2002) and (Rohatgi and
Saleh 2000). I encourage to see both the proofs as they used two different approaches.
Casella and Berger (2002) used the transformation formula to explicitly derive the joint

distribution of X,, and S2, whereas Rohatgi and Saleh (2000) elegantly used the joint
moment generating function to prove the above results.

2

Considering U,, = % ~ x2_,, the sampling distribution of the MLE V,, = EZ =2 xU,

o

can be easily obtained. The CDF of V,, is obtained as

n

Py (v):P(Vngv):P<Un§%>.

Therefore,
d nv n
fV (1)) = %Fvn(v) = fUn (ﬁ) . ;,0 < v < 0.

n

For every n, the sampling distribution of the MLE of 02, 02 is given by:

e 2 2 (nv) 2 -
f;%(v) r (st 2) —2,0<v< 0.
mu = 3
sigma2 = 1.5
n_vals = c¢(3,5,10,50,100, 200)
M = 1000

par (mfrow = c(2,3))
for(n in n_vals){
mu_hat = numeric(M)
sigma2_hat = numeric(M)
for(i in 1:M){
x = rnorm(n = n, mean = mu, sd = sqrt(sigma2))
sigma2_hat[i] = (1/n)*sum((x-mean(x)) 2)
}
hist(sigma2_hat, probability = TRUE, main = paste("n = ", n), xlab = expression(widehat (sij
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curve(dist_sigma2_hat(x), add = TRUE, col = "red", lwd = 2)
points(sigma2, 0, pch = 19, col = "red", cex = 1.5)
points(mean(sigma2_hat), 0, col = "blue", lwd = 3,

cex = 2)
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Figure 15: The sampling distribution of the MLE of o2 is obtained through simulation for
different sample sizes. The exact sampling distribution is shown using the red
curve. The red dot indicates the true value of o2, wheres the blue circle indicates
ﬁ Zgzl ;? , which is the approximate expectation of % based on M replica-
tions. As the sample size increases, the circle engulfs the red dot which is a signature
of asymptotic unbiasedness. In other words, it ensures that Bias (EZ, 02) — 0 as

n — oQ.

m)

By performing the above exercises for different choices of n, we observed that the this sam-
pling distribution is valid for every n. However, as n increases, the shapes of the sampling
distributions eventually tends to the normal distribution. We need to give some reasoning for
this which is intuitively appealing.

Let us explore the connections between U, = "-1S% and V, = 5;2 = %2 x U, and their

approximation by the normal distribution for large n. Suppose that we are given the fact
that for every n, U, ~ x2_, distribution. The PDF of V,, has been obtained by using the
transformation formula. The shapes of the PDF of V,, in fact shows a normally distributed
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behavior for large n values. Since, the chi squared distribution belongs to the G(-,-) family,
V., is a constant multiple of a § (a = an’ 8= 2) =2 ,.

Therefore, if we can show that for large n, x2 distribution can be well approximated by the
normal distribution, we are done. In the following we show that for large n, x2 PDF is well
approximated by the normal distribution with mean n and variance 2n. We investigate the

2
MGF of =2 and see that it is approximately e's for large n.

Von
(t)}——\/ﬁt—knlo - —t2+0<1>
2T TP TR T) 72 n3fz)

X—n
V2n
Therefore U,, ~ N (n —1,2(n — 1)) for large n. Hence,

I

log [M

§

Therefore,
AN0,1) = X AN (n,2n).

2
)
n n n n n2

—_ g2 U n]%fgejv ((n——])a2 2(n——1)04>'
In the following, R Codes, the exact sampling distribution of E% and the normal approximation
is shown graphically and the approximations are remarkable accurate for large n values.

n_vals = c¢(3,5,10,30,50,100)

par (mfrow = c(2,3))

for(n in n_vals){
lower_lim = sigma2+(n-1)/n- 5*sqrt(sigma2”2*2x(n-1)/n"2)
upper_lim = sigma2*(n-1)/n+ 5*sqrt(sigma2”2*2*(n-1)/n"2)

curve(dist_sigma2_hat(x), col = "red", lwd = 2, lower_lim, upper_lim, ylab = "f(x)")

curve (dnorm(x,mean = sigma2*(n-1)/n, sd = sqrt(sigma2~2*2*(n-1)/n"2)),
add = TRUE, 1ty = 2, col = "blue", lwd = 2)
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Figure 16: The exact sampling distribution of the MLE of ;Z is shown for different choices of
n (red curve). The normal approximation with mean W variance 2(”;721)”4 is
shown using the blue dotted line. It is evident that as the sample size increases, the

exact sampling distribution can be well approximated by the normal distribution.

Connection between the Hessian and Fisher Information

In the examples discussed above, the MLEs have always appeared to be approximately normal
at least for large n and centered about the true value of the parameter. However, we did not
explore yet the computation of the variance of the MLEs. In fact, some analytical computation
for the variance can be carried out and established as well by computer simulation. We consider
some definition first.

I Score Function and Fisher Information

If X = (X,,X,,...,X,,) be a random sample of size n from the PDF (PMF) f(z|0),
0 €0O.

The Score function is defined as

S(X;6) = 8log£0(X\9).

It can be easily shown that
E, [S(X:0)] = 0.
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The Fisher Information is defined as

1,(0) = Var, (ZS(XM)> = ZVaTe (S(X;:0) = > Eg(S(X;36))°.

i=1 =1

The Fisher Information can also be expressed as
9 log f (X0) 9 log f (x/6)
L,(0) = —E, ( 902 > = _/n%n < 502 > f(x] )dx.

A natural question arises, how to interpret the expectation of the score function. Here is an
interpretation in terms of simulation.

o Fix parameter 0 = 0,

e Fix the sample size n

¢ Fix the number of replications M
o For each m € {1,2,..., M}

— Simulate X = (X, ..., X,,) ~ f(x]6,).
— Compute S(X;6,) = 5,, (say)

M—o0
~

M
¢ Mt S~ E(S(Xi6,)) =0

Visualization of the Score function

In the following, we visualize the score function for the Poisson distribution. We simulate
multiple sets of random sample of size n = 10 from the Poisson(),) distribution and plot the
score function as a function of A.

par (mfrow = c(1,1))
lambda_0 = 3 # true value
n =10 # sample size
X = rpois(n = n, lambda = lambda_O0)
score_poisson = function(lambda){

-n + sum(x)/lambda
}
lambda_vals = seq(l, 5, by = 0.01)
score_vals = numeric(length = length(lambda_vals))
for(i in 1:length(lambda_vals)){

score_vals[i] = score_poisson(lambda = lambda_vals[i])
}
plot(lambda_vals, score_vals, type = "1",

col = "grey", lwd = 2, xlab = expression(lambda),
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ylab = expression(S(bold(X),lambda)))

points(lambda_0, O, pch = 19, col = "red", cex = 1.4)
abline(h = 0, lwd = 2, col = "blue", lty = 2)

points(mean(x), 0, col = "blue", cex = 2, lwd = 2,
pch = 19)
L _|
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Figure 17: The shape of the score function is shown for a simulated sample of size n = 10 from

the Poisson(\, = 3) distribution. The blue dot represents the MLE of A and the
red dot is the true value.

Let us repeat the above process and plot the score functions in a single plot.

n
M

= 10
= 50

lambda_0 = 3
for (i in 1:M) {

data = rpois(n = n, lambda = lambda_0)
if(i == 1)
curve (-n+sum(data)/x, 1, 5, col = "grey", lwd = 2,
xlab = expression(lambda), ylab = expression(S(bold(X),lambda)))

else
curve (-n+sum(data)/x, add= TRUE, col = "grey",
lud = 2)
points(mean(data), 0, col = "blue", cex = 1, lwd = 2,
pch = 19)
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}

points(lambda_0, O, pch = 19, col = "red", cex = 1.4)
abline(h = 0, lwd = 2, col = "blue", lty = 2)

abline(v = lambda_0, col = "magenta", lty = 2, lwd = 3)

|
I X
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o _|
~ — |
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Figure 18: Shapes of the score function for different se@f samples each of size n = 10. The
blue dot represents the MLE of of A which is X,,. The red dot is the true value. The
vertical magenta line at )\ intersects the score function at S(X, A\y) and the average

of these values would be close to zero. 7 Zif:l S(Xm) X\,) ~ ES(X,\,) = 0.

Let us do the same experiment for the Cauchy distribution whose score function is given by

%0 =20

par (mfrow = c(1,1))

mu 0 = 3 # true value
n =10
x = rcauchy(n = n, location = mu_0)

score_cauchy = function(mu){
2xsum((x—mu) / (1+(x-mu) ~2))

}

mu_vals = seq(l, 5, by = 0.01)

score_vals = numeric(length = length(mu_vals))

for(i in 1:length(mu_vals)){
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score_vals[i] = score_cauchy(mu = mu_vals[i])
}
plot(mu_vals, score_vals, type = "1",
col = "grey", lwd = 2, xlab = expression(mu),
ylab = expression(S(bold(X) ,mu)))
points(mu_0, O, pch = 19, col = "red", cex = 1.4)
abline(h = 0, lwd = 2, col = "blue", lty = 2)
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Figure 19: The shapes of the score function for different samples of size n = 10. The true value
of u = py = 3 has been used for simulation purpose (marked as red dot). Reader is
encouraged to execute the following codes multiple times and check the shapes for
different choices of p, and sample size n.

Asymptotic distribution of the MLE

Under certain regularity conditions for the studied population distribution f (a:\@ ), if 9 be the

MLE of 6 and I,,(f) be the Fisher Information. Then SE (Hn) \/Var 7 19 In
addition ,\

,—0 e

——— — N(0,1), in distribution.

SE (0,
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In addition, SE (5;) =4/Var (Gn) ~A L (5;) and

/0\71——/\6 — N(0,1), in distribution.
SE (0,,)

In the following simulation experiment, we verify the above results for the Poisson distribution.
The MLE for the parameter X is 5\; =X,,. SE (5\;) = \/g and SE (X;) =1/ ’\T" =1/ %

par (mfrow = c(2,3))
lambda_O0 = 3
M = 1000
n_vals = c(3, 5, 10, 35, 50, 100)
for(n in n_vals){
U = numeric(length
V = numeric(length
for(i in 1:M){
x = rpois(n = n, lambda = lambda_0)
U[i] = (mean(x)-lambda_0)/(sqrt(lambda_0/n))
V[i] = (mean(x)-lambda_0)/(sqrt(mean(x)/n))

M)
M)

}

hist (U, probability = TRUE, main = paste("n = ", n), breaks = 30,
xlab = expression(U[n]))

curve (dnorm(x), add = TRUE, col = "red", lwd = 2)

hist(V, probability = TRUE, main = paste("n = ", n), breaks = 30,

xlab = expression(V[n]l))
curve (dnorm(x), add = TRUE, col = "red", lwd = 2)
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Figure 20: As the sample size increases the standardized estimators of the MLE of A is ap-
proximately N (0,1) distributed.
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Figure 21: As the sample size increases the standardized estimators of the MLE of A is ap-
proximately N (0, 1) distributed.
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Multiparameter setting and Score function

Suppose that X, X,, ..., X,, be a random sample of size n from the population PDF (PMF)
f(z]0) and € © C RP and p > 1. Let 0 = (04, ... ,0,) and the corresponding MLE is expressed
as

b= (3.5,

MLE is computed by solving the system of p equations given by

o, (0) _ .
69] _07.76 {172))p}
We define 5L (6) 5L (6)
l l
5= g ™ M= 06,

ford,j € {1,2,...,p}. Similar to the one variance case, here we will have the Fisher Information
Matrix defined as

) Eg(H,g) -~ By(H,,)

E9<H pp

pl

When the partial derivatives are evaluated at the MLE é; , then we obtain the Observed Fisher
Information Matrix.

! Fisher Information Matrix and Multivariate Normality of MLE

Let J, = I;1(0), the inverse of the expected Fisher Information Matrix. Under appro-
priate regularity conditions

Vi (0, = 0,,,) " MVN, (0,.7,(0)) .

In particular

SE(6)) ’

J

where §]\E(0Aj) = J,(J,7), the jth diagonal entry of J,,, evaluated at 0. Also

Cov (0;,0,,) ~ J,(j, k).
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The famous regularity conditions

Throughout the discussions in the statistical computing lectures, we have observed only nice
things about the MLE of model parameter(s) 6, two prominent properties are: (a) MLEs are
consistent estimators, that means as the sample size goes to infinity, the sampling distribution
of the MLEs will be highly concentrated at the true parameter value 6, or in other words,
the limiting distribution of the MLE is degenerate at the true value. In fact, this property is
true for any probability density (or mass) functions f(x|6),6 € © which belongs to the family
satisfying the following four conditions:

The random sample X, X,,..., X, are independent and identically distributed (IID)
following f(x|0).

The parameter is identifiable, that is, if 6, # 6,, then f(x|0,) # f(x|05).

For every 6, the density functions f(x|6), have common support, and f(z|f) is differen-
tiable in 6.

The parameter space €2 contains an open set w of which the true parameter value 6, is
an interior point.

In many examples in this document, we also observed that MLEs appeared to be asymptotically
normal and asymptotically efficient as well. In addition to the above four conditions, the
following two conditions are needed to ensure the above two properties.

For every x € y, support of the PDF (PMF) f(x|0) is three times differentiable with
respect to 6, the third derivative is continuous in 6, and [ f(z|f)dx can be differentiated
three times under the integral sign.

For any 6, € €, there exists a positive number ¢ and a function M (x) (both of which
depend on 6,) such that

3
’;Q?,Ing(l?W)‘SM(:U) forallz € x, 0,—c<0<6,+c,

with E, [M(X)] < cc.

These conditions are typically known as the regularity conditions.

Exception: MLE is not asymptotically normal Uniform(0, 0)

Some more examples
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library(datasets)

plot(datasets: :JohnsonJohnson)

hist (JohnsonJohnson, xlab = "Quarterly earnings (dollars)",
main = "", probability = TRUE)

n = length(JohnsonJohnson)
Lik = function(lambda){
(lambda"n) * exp(-lambda * sum(JohnsonJohnson))

}
lambda_vals = seq(0.01, 0.4, by = 0.001)
Lik_vals = numeric(length = length(lambda_vals))
for (i in 1:length(lambda_vals)) {

Lik _vals[i] = Lik(lambda_vals[i])
}

lambda_hat = n/sum(JohnsonJohnson) # MLE

par(mfrow = c(1,2))
plot(lambda_vals, Lik_vals, pch = 19, col = "red",

xlab = expression(lambda), ylab = expression(L(lambda)),

type = "p", lwd = 2)
points(lambda_hat, 0, pch = 19, col = "blue", cex = 1.2)

plot(lambda_vals, log(Lik_vals), pch = 19, col = "red",
xlab = expression(lambda), ylab
type = "p", lwd = 2)

abline(v = lambda_hat, col = "blue", lwd = 2, 1ty = 2)

par (mfrow = c(1,1))
hist(JohnsonJohnson, probability = TRUE,
xlab = "Quarterly earnings (dollars)",
main = "",)
curve (lambda_hat*exp(-lambda_hat*x), add = TRUE,
col = "red", lwd = 2)

f = function(x){
lambda_hat*exp (- lambda_hat*x) *(x>0)
}

# P(X>18)
exp(-18+lambda_hat)
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43 integrate(f, lower = 18, upper = Inf)
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Exploratory Data Analysis

Introduction

This section is primarily devoted to the exploration of various datasets using R. Students
explore different datasets available in the datasets package in R, giving them exposure to real-
world data. In the previous few lectures, we primarily studied various probability distributions
and their properties, which are theoretical in nature. In the classroom, students explore
different datasets, discuss them among themselves, and read the help files to gain detailed
information about each dataset. Some examples of datasets explored by the students are
provided here. Some testing problems have also been discussed.

The ChickWeight dataset

The datasets is a package in R, part of the base R packages. Let us get into real data set.
We consider the ChickWeight data set available in R. The body weights of the chicks were
measured at birth and every second day thereafter until day 20. They were also measured on
day 21. There were four groups on chicks on different protein diets.

# datasets::ChickWeight
head (ChickWeight)

weight Time Chick Diet

1 42 0 1 1
2 51 2 1 1
3 59 4 1 1
4 64 6 1 1
5 76 8 1 1
6 93 10 1 1
nrow(ChickWeight)

[1] 578
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# help("ChickWeight")

class(ChickWeight)

[1] "nfnGroupedData" "nfGroupedData" '"groupedData" "data.frame"
names (ChickWeight)

[1] "weight" "Time" "Chick" "Diet"

summary (ChickWeight)

weight Time Chick Diet

Min. : 35.0 Min. : 0.00 13 : 12 1:220
1st Qu.: 63.0 1st Qu.: 4.00 9 12 2:120
Median :103.0 Median :10.00 20 12 3:120
Mean :121.8  Mean :10.72 10 12 4:118
3rd Qu.:163.8 3rd Qu.:16.00 17 : 12

Max. :373.0  Max. :21.00 19 : 12

(Other) :506

The function class is important to understand different data types. In data analysis, this
function is often useful to check for the correct input type to specific functions in R.

class(ChickWeight$weight)

[1] "numeric"

class(ChickWeight$Time)

[1] "numeric"

class(ChickWeight$Chick)

[1] "ordered" "factor"
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1 class(ChickWeight$Diet)

[1] "factor"

Checking for missing values

1 head(is.na.data.frame(ChickWeight)) # check for missing values

weight Time Chick Diet
FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE

O WN -

1 sum(is.na.data.frame(ChickWeight))

(11 O

is.na function

1 x =c¢(1, 2, 3, 4, NA, 5, 4:1000)
2 print(x)

3 is.na(x)

4+ sum(is.na(x))

5 which(is.na(x) == TRUE)

Reading columns in a data.frame

1 ChickWeight[ ,"Chick"]

198



[1]
[26]
[51]
[76]

[101]
[126] 11 11 11 11 11 11
[151] 13 13 13 13 13 14
[176] 16 16 16 16 16 16
[201] 19 19 19 19 19 19
[226] 21 21 21 21 21 21
[251] 23 23 23 23 23 23
[276] 25 25 25 25 25 26
[301] 27 27 27 27 28 28
[326] 29 29 29 30 30 30
[351] 31 31 32 32 32 32
[376] 33 34 34 34 34 34
[401] 36 36 36 36 36 36
[426] 38 38 38 38 38 38
[451] 40 40 40 40 40 40
[476] 42 42 42 42 42 42
[501] 44 44 44 44 44 44
[526] 46 46 46 46 46 47
[6551] 48 48 48 48 49 49
[576] 50 50 50

50 Levels: 18 < 16 < 15

R ©O© N 01T W~
= O N oW
= O N oW

ChickWeight[ ,"Time"]

[1] 0 2 4 6 810
[26] 2 4 6 8 10 12
[51] 4 6 8 10 12 14
[761] 6 8 10 12 14 16

[101] 10 12 14 16 18 20
[126] 12 14 16 18 20 21
[151] 14 16 18 20 21 O
[176] 0 2 4 6 8 10
[201] 8 10 12 14 16 18
[226] 10 12 14 16 18 20
[251] 12 14 16 18 20 21
[276] 14 16 18 20 21 O
[301] 16 18 20 21 0 2
[326] 18 20 21 0 2 4
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1

[351]
[376]
[401]
[426]
[451]
[476]
[501]
[526]
[551]
[576]
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10
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ChickWeight[ ,"weight"]

[1]
[19]
[37]
[55]
[73]
[91]

[109]
[127]
[145]
[163]
[181]
[199]
[217]
[235]
[253]
[271]
[289]
[307]
[325]
[343]
[361]
[379]
[397]
[415]
[433]
[451]
[469]
[487]
[505]

42
122
42
141
41
110
44
177
48
192
51
55
98
64
145
62
169
58
187
62
221
63
287
56
192
66
175
69
145

51
138
49
164
49
116
52
182
53
227
54
62
107
77
163
78
205
73
230
73
263
85
332
68
232
79
184
96
146

59
162
56
197
57
126
63
184
60
248
42
65
115
90
170
102
236
92
279
85
201
107
361
80
280
101
199
131
41

64
187
67
199
71
134
74
181
65
259
51
71
117
95
175
124
251
114
309
102
305
134
373
83
290
120
204
157
50

76
209
74
220
89
125
81
175
67
266
61
82
40
108
42
146
39
145
42
123
39
164
39
103
42
154
42
184
61

8 10
0 12
2 14
4 16
6 18
8 20
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93
215
87
223
112
42
89
41
71
41
72
88
50
111
52
164
46
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138
50
186
48
112
50
182
49
188
78
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43
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197
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197
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10 12

125
39
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49
174
59
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86
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74
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207
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198
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12
14

149
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[523] 101 120 144 156 173 210 231 238 41 53 66 79 100 123 148 157 168 185
[541] 210 205 39 50 62 80 104 125 154 170 222 261 303 322 40 53 64 85
[559] 108 128 152 166 184 203 233 237 41 54 67 84 105 122 155 175 205 234
[577] 264 264

ChickWeight[ ,"Diet"]

(1] 1111111111111 11111111111111111111111
38 1111111111111 11111111111111111111111
[r5] 1111111111111 11111111111111111111111

(112 111111111111 111111111111111111111111
[149] 1111111111111 11111111111111111111111
[186] 11 1111111111111 111111111111111111112
[223] 222222222222222222222222222222222222
[260] 222222222222222222222222222222222222
[297] 222222222222222222222222222222222222
[334] 222222233333333333333333333333333333
[371] 333333333333333333333333333333333333
[408] 333333333333333333333333333333333333
[445] 3 33333333333333344444444444444444444
[482] 4 4 4 4 4 4 4 44 4444444444444 44444444444444
[619] 4 4 4 4 4 4 4 4 4 444 4444444444444 444444444414
[656] 4 4 44 4444444444444 4444414

Levels: 1 2 3 4

Subsetting of data

o We will collect only the weight profile of the chick (coded as 1) and given the diet type
1. The following code will help us to obtain the data and plot the profile.

w = ChickWeight[1:12 ,"weight"]

t ChickWeight[1:12 ,"Time"]

plot(t,w, col = "red", pch = 2,
xlab = "Time", ylab = "Weight (gm)",
main = "Diet - I", cex = 1.3, 1lwd = 3)
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We can also separate the data for different types of diet. The function subset is useful in
doing so.

diet_1 = subset(ChickWeight, Diet == 1, select = c(weight, Time, Chick))
diet_2 = subset(ChickWeight, Diet == 2, select = c(weight, Time, Chick))
diet_3 = subset(ChickWeight, Diet == 3, select = c(weight, Time, Chick))
diet_4 = subset(ChickWeight, Diet == 4, select = c(weight, Time, Chick))

dim(diet_1)

(1] 220 3

dim(diet_2)

(1] 120 3

dim(diet_3)

[1] 120 3
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1 dim(diet_4)

(1] 118 3

Understanding the summary of the data is an important part of any exploratory data analy-
sis.

1 summary(ChickWeight)

weight Time Chick Diet
Min. : 356.0 Min. : 0.00 13 ;12 1:220
1st Qu.: 63.0 1st Qu.: 4.00 9 : 12 2:120
Median :103.0 Median :10.00 20 : 12 3:120
Mean :121.8 Mean :10.72 10 : 12 4:118
3rd Qu.:163.8 3rd Qu.:16.00 17 : 12
Max. :373.0 Max. :21.00 19 : 12

(Other) :506

1 summary(diet_1)

weight Time Chick
Min. : 35.00 Min. : 0.00 13 : 12
1st Qu.: 57.75 1st Qu.: 4.00 9 : 12
Median : 88.00 Median :10.00 20 ;12
Mean :102.65 Mean :10.48 10 : 12
3rd Qu.:136.50 3rd Qu.:16.00 17 ;12
Max. :305.00 Max. :21.00 19 : 12

(Other) : 148

1 summary(diet_2)

weight Time Chick
Min. : 39.0 Min. : 0.00 24 112
1st Qu.: 65.5 1st Qu.: 5.50 30 012
Median :104.5 Median :11.00 22 112
Mean :122.6 Mean :10.92 23 :12
3rd Qu.:163.0 3rd Qu.:16.50 27 112
Max. :331.0 Max. :21.00 28 :12
(Other) :48
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1 summary(diet_3)

weight Time Chick
Min. : 39.0 Min. : 0.00 33 112
1st Qu.: 67.5 1st Qu.: 5.50 37 :12
Median :125.5 Median :11.00 36 :12
Mean :142.9 Mean :10.92 31 112
3rd Qu.:198.8 3rd Qu.:16.50 39 112
Max. :373.0 Max. :21.00 38 112
(Other) :48

1 summary(diet_4)

weight Time Chick
Min. : 39.00 Min. : 0.00 45 112
1st Qu.: 71.25 1st Qu.: 4.50 43 112
Median :129.50 Median :10.00 41 :12
Mean :135.26 Mean :10.75 a7 112
3rd Qu.:184.75 3rd Qu.:16.00 49 112
Max. :322.00 Max. :21.00 46 112
(Other) :46

‘We can also have some first few or last few observations from the data set.

1 head(diet_1, n =13)

weight Time Chick

1 42 0 1
2 51 2 1
3 59 4 1
4 64 6 1
5 76 8 1
6 93 10 1
7 106 12 1
8 125 14 1
9 149 16 1
10 171 18 1
11 199 20 1
12 205 21 1
13 40 0 2
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1

1

tail(diet_1, n = 10)

211
212
213
214
215
216
217
218
219
220

weight Time Chick

54
58
65
73
77
89
98
107
115
117

4

6

8
10
12
14
16
18
20
21

20
20
20
20
20
20
20
20
20
20

basic plotting function

plot(weight ~ Time, data

weight

150 250

50

diet_1, main = "Diet = 1")

Diet=1
o
o)
o ©°
8
> o 88
o 9 o4
o @800
8@ 80
5 B 8
°g o O
[ [ [ [
0 10 15 20
Time
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1 head(diet_1$Chick)

(1] 111111
50 Levels: 18 < 16 < 16 <13 <9< 20<10<8<K17<19<4<6<11< ... <48

In the above plot, growth profiles of different chicks can not be identified separately. We can
draw the growth profiles of each chick separately. We can have multiple growth profiles also
in the same plot. We can create a single growth profile first (for chick = 1) and others can be
added using the lines or points commands.

1 par(mfrow = c(1,1))
2 plot(weight ~ Time, data = subset(diet_1, Chick == 1),

3 col =1, lwd = 2, type = "b",
4 ylim = c(min(diet_1%weight), max(diet_1$weight)),
5 main = "Diet - I")
6 for(i in 2:20){
7 lines(weight ~ Time, data = subset(diet_1, Chick == i), col = i,
8 lwd = 2, type = "b")
o }
Diet - |
(o)
(o] -
o — Jo-0280
< 9L0-.02
2 o O/ /8 o
] Q=00
= © /o—°§§’ o
619‘8/ A’oe
so-B=-070=4-8
— a 4g§§;g=8-oo
A-1 1B
/azgfg’o
o _| 5950—0
el ogg =
I I I I I
0 5 10 15 20
Time

It is evident from the picture that the variance associated with measurements of weights
increases as the time increases. Using the box plot, we can get a more clearer understanding
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about the exact shape of the spread. Using par(mfrow = c(2,2)) we can obtain four plots
in a single plot window.

par (mfrow = c(1,1))

boxplot(weight ~ Time, data = diet_1,
main = "Diet = I", col = diet_1$Time,
lwd = 2)

Diet = |

300
I

250
I

weight
200
|

150
I

100
I

50

I I I I I I I I I I I I
O 2 4 6 8 10 12 14 16 18 20 21

We can execute the same task for other diet type as well.
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par (mfrow = c(1,3))

boxplot(weight ~ Time, data = diet_2,

main = "Diet = 2", col = "grey",
lwd = 1)
boxplot(weight ~ Time, data = diet_3,
main = "Diet = 3", col = "grey",
lwd = 1)
boxplot(weight ~ Time, data = diet_4,
main = "Diet = 4", col = "grey",
lwd = 1)
Diet = 2 Diet =3
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50
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s
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048 14 20

Time

There are multiple ways to visualize the distribution of the data. violin plot is also commonly
used to visualize the data distribution. This can be done by loading the package vioplot.

library(vioplot)

Loading required package: sm

Package 'sm', version 2.2-6.0: type help(sm) for summary information
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Loading required package: zoo
Attaching package: 'zoo'

The following objects are masked from 'package:base':
as.Date, as.Date.numeric

par (mfrow = c(1,2))

vioplot(weight ~ Time, data = diet_1,
main = "Diet = I", col = diet_1$Time,
lwd = 1)

vioplot(weight ~ Time, data = diet_2,
main = "Diet = 2", col = diet_2$Time,

lwd = 1)
Diet = | Diet=2
N | [
S
R\ S
N
= I = _
2 =)
2 3 - H 2 g |
d>¢ | H 65
8 — _('»O CL(D) —. l(»-\)‘ 4
TTT T T T T T T 71711 TT T T T T T T T 71711
0 4 8 14 20 0 4 8 14 20
Time Time

par(mfrow = c(1,2))

vioplot(weight ~ Time, data = diet_3,
main = "Diet = 3", col = diet_3$Time,
lwd = 1)

vioplot(weight ~ Time, data = diet_4,
main = "Diet = 4", col = diet_4$Time,
lwd = 1)
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! Shapes of data distributions
symmetric positively skewed negatively skewed
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Comparing the final growth

1 diet_1_T21 = subset(diet_1, Time==21, select = c(weight))
> head(diet_1_T21)

weight
12 205
24 215
36 202
48 157
60 223
72 157
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diet_2_T21 = subset(diet_2, Time==21, select = c(weight))
diet_3_T21 = subset(diet_3, Time==21, select = c(weight))
diet_4_T21 = subset(diet_4, Time==21, select = c(weight))

Let us create a new data set with only the final weight of the chicks. The output of the subset
function returns a data.frame, not a vector.

weight = c(diet_1_T21$weight, diet_2_T21$weight,
diet_3_T21$weight, diet_4_T21$weight)
Diet = c(rep(l, nrow(diet_1_T21)), rep(2, nrow(diet_2_T21)), rep(3, nrow(diet_3_T21)), rep(4
Diet = as.factor(Diet) # store as factor
ChickWeight_T21 = data.frame(weight, Diet)

Let us make some informative plot of only the distribution of weights on 21st day for different
dietary treatments.

par(mfrow = c(1,2))

boxplot (weight ~ Diet, data = ChickWeight_T21,
lwd = 2, main = "Day = 21", col = 2:5)

vioplot(weight ~ Diet, data = ChickWeight_T21,
lwd = 2, main = "Day = 21",

col = 2:5)
Day = 21 Day = 21
o o
o o
™ ™
2 2
o o o o
o o
O — o
- -
| | | |
1 2 3 4 1 2 3 4
Diet Diet
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If ,u,gjf, 1 < j < 4 be the mean weight of the chick when considered under dietary type j €
{1,2,3,4}, respectively. We are interested to test the following null hypothesis given by

1 2 3 4
Hy: M<21) = M<21) = N<21) = (21)

against the alternative H; which specifies that if at least two means are not equal. This falls
under the statistical exercise known as the analysis of variance.

1 out = aov(weight ~ Diet, data = ChickWeight_T21)
2 summary (out)

Df Sum Sq Mean Sq F value Pr(>F)
Diet 3 57164 19055 4.655 0.00686 x*x*
Residuals 41 167839 4094

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

e Small p-value 0.00686 indicates that the null hypothesis is rejected at 5% level of signif-
icance.

1 par(mfrow = c(2,2))
2 plot(out)
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Residuals

JIStandardized residuals|

o Natural question arises which two are different?

1 out_HSD = TukeyHSD(out, data = ChickWeight_T21)
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2 plot(out_HSD)

Standardized residuals

Standardized residuals
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Theoretical Quantiles
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95% family—wise confidence level
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Differences in mean levels of Diet

Role of assumptions
Checking for normality assumptions of the weight of chicks under each diet. We can use

the function shapiro.test() to check whether the data distribution is normal. The null
hypothesis is

Hy: the data are normally distributed (0.1)
H: the data are not normally distributed

shapiro.test(ChickWeight_T21$weight [Diet == 1])
Shapiro-Wilk normality test

data: ChickWeight_T21$weight [Diet == 1]
W = 0.95602, p-value = 0.5905
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shapiro.test(ChickWeight_T21$weight [Diet == 2])

Shapiro-Wilk normality test

data: ChickWeight_T21$weight[Diet == 2]
W = 0.97725, p-value = 0.9488

shapiro.test(ChickWeight_ T21$weight [Diet == 3])

Shapiro-Wilk normality test

data: ChickWeight_T21$weight[Diet == 3]
W = 0.97045, p-value = 0.895

shapiro.test(ChickWeight_ T21$weight [Diet == 4])

Shapiro-Wilk normality test

data: ChickWeight_T21$weight[Diet == 4]
W = 0.88694, p-value = 0.1855

A large p value indicates that the data are normally distributed. Here the null hypothesis is
that the data distribution is normal. Therefore, a large p-value indicates the acceptance of the
null hypothesis. There are other visual representations to check the normality assumption.

par (mfrow = c(2,2))

ggnorm(ChickWeight_T21$weight [Diet == 1], col = "red", cex
gqline(ChickWeight_T21$weight [Diet == 1])
qgnorm(ChickWeight_T21$weight [Diet == 2], col = "red", cex
gqline(ChickWeight_T21$weight [Diet == 2])
qgnorm(ChickWeight_T21$weight [Diet == 3], col = "red", cex
qqline(ChickWeight_T21$weight [Diet == 3])
qgnorm(ChickWeight_T21$weight [Diet == 4], col = "red", cex
gqline(ChickWeight_T21$weight [Diet == 4])

1.3, lwd = 2)

1.3, lwd = 2)

1.3, lwd = 2)

1.3, lwd = 2)
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Normal Q-Q Plot Normal Q-Q Plot
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Some more options of boxplot using ggplot2

The package ggplot2 offers several options for beautiful graphics using R. In the following,
we demonstrate how to draw the side by side boxplot of continuous variable with respect to a
factor variable in the data.

library(ggplot2)
ggplot2::ggplot(data = ChickWeight_ T21,
aes(Diet, weight, fill = Diet)) +
geom_boxplot() +
scale_y_continuous("Chick weight (gm)",
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breaks = seq(50, 400, by = 50)) +
labs(title = "Distribution of weight at Day 21", x = "Diet")

Distribution of weight at Day 21

350 -
300 -
250 -

200-

A W N B

Chick weight (gm)

DHEEE S

150~

100-

Diet

library(ggplot2)
ggplot2: :ggplot(data = ChickWeight_T21,
aes(Diet, weight, fill = Diet)) +
geom_boxplot() +
scale_y_continuous("Chick weight (gm)",
breaks = seq(50, 400, by = 50)) +
labs(title = "Distribution of weight at Day 21", x = "Diet") +
geom_dotplot(binaxis='y', stackdir='center', dotsize=0.8)

Bin width defaults to 1/30 of the range of the data. Pick better value with
“binwidth™.
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Distribution of weight at Day 21
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To visualize the shape of the distribution with respect to different categories, we can also use
the density plot.

library(ggplot2)

ggplot (ChickWeight_T21, aes(x = weight, color = Diet)) +
geom_density(linewidth = 1)
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We can have vertical lines at the mean value of each diet category. First we need to compute
the means of each group.

Diet_means = c(mean(ChickWeight_T21$weight [Diet==1]),
mean(ChickWeight_ T21$weight [Diet==2]),
mean (ChickWeight_T21$weight [Diet==3]),
mean (ChickWeight_T21$weight [Diet==4]))

library(ggplot2)
ggplot (ChickWeight T21, aes(x = weight, fill = Diet)) +
geom_density(linewidth = 1)

220



0.0075-

Diet

>.0.0050-
Hi
[
(]
©

0.0025 -

0.0000 -

100 200 300
weight

Testing for Equality of variances

Il
[
[E
—
-

var.test(ChickWeight_T21$weight [Diet
ChickWeight_T21$weight [Diet == 2])

F test to compare two variances

data: ChickWeight T21$weight[Diet == 1] and ChickWeight_ T21$weight [Diet == 2]
F = 0.56439, num df = 15, denom df = 9, p-value = 0.3146
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.1497316 1.7624337
sample estimates:
ratio of variances
0.5643921

The Levene Test (Levene 1960) can be used to check for the equality of variances for multiple
groups.
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1

library(car)

Loading required package: carData

car::leveneTest(weight ~ Diet, data = ChickWeight_T21, center = mean)

Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)

group 3 1.2412 0.3072
41

The Joyner—Boore Attenuation Data

attenu data set, known as The Joyner-Boore Attenuation Data, is available in the
datasets package in R. This data gives peak accelerations measured at various observation
stations for 23 earthquakes in California. The data have been used by various workers to
estimate the attenuating affect of distance on ground acceleration. Type help("attenu")
in the console for more information and also interested readers can check out the article by
(Boore and Joyner 1982).

library(datasets)
# datasets::attenu
head (attenu)

event mag station dist accel

1 17.0 117 12 0.359

2 27.4 1083 148 0.014

3 2 7.4 1095 42 0.196

4 27.4 283 85 0.135

5 2 7.4 135 107 0.062

6 2 7.4 475 109 0.054

names (attenu) # variable names

[1] "event"  "mag" "station" "dist" "accel"
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1 dim(attenu) # dimension of the data

[1] 182 5
1 summary(attenu) # basic summary of the data
event mag station dist
Min. : 1.00 Min. :5.000 117 5 Min. : 0.50
1st Qu.: 9.00 1st Qu.:5.300 1028 4 1st Qu.: 11.32
Median :18.00 Median :6.100 113 : 4 Median : 23.40
Mean :14.74 Mean :6.084 112 3 Mean : 45.60
3rd Qu.:20.00 3rd Qu.:6.600 135 : 3 3rd Qu.: 47.55
Max. :23.00 Max. :7.700 (Other) :147  Max. :370.00
NA's : 16
accel
Min. :0.00300
1st Qu.:0.04425
Median :0.11300
Mean :0.15422
3rd Qu.:0.21925
Max. :0.81000

e There are 16 observations in the station column in the data which is denoted by NA.
e Other variables are continuous in nature and their basic numerical summaries are pro-
vided and also they do not have any missing observations.

1 # suppose we remove all stations whose ID is missing
2 complete.cases(attenu) # which rows are complete

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[49] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
(73] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE
[85] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
[97] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

[109] TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
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[121]
[133]
[145]
[157]
[169]
[181]

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

TRUE FALSE TRUE
TRUE TRUE TRUE
TRUE TRUE TRUE
TRUE TRUE FALSE
TRUE TRUE TRUE

TRUE

attenu[81, ]

event mag

81

17 7.

station dist accel

TRUE
TRUE
TRUE
TRUE
TRUE

6 <NA> 32.9 0.064

FALSE
TRUE
TRUE
TRUE
TRUE

TRUE FALSE
TRUE TRUE
TRUE TRUE
TRUE TRUE
TRUE TRUE

# indices of rows with at least missing observations

miss_row =

print (miss_row)

[1]

79 8

which(complete.cases(attenu) == FALSE)

TRUE
TRUE
TRUE
TRUE
TRUE

TRUE TRUE TRUE
TRUE TRUE TRUE
TRUE FALSE FALSE
TRUE TRUE TRUE
TRUE TRUE TRUE

1 94 96 99 107 108 114 116 118 123 126 128 155 156 160

# Creating a new data after removing the

attenu_new
attenu_new$station

[1]
[16]
[31]
[46]
[61]
[76]
[91]

[106]
[121]
[136]
[151]
[166]

117

1014
269

1027
113

1292
1376
5057
5028
1418
5160
5072

117 Levels:

= attenul[ -miss_row, ]

1083 1095
1015 1016
135 1093
111 125

1028 2714
283 885

286 5028
5051 5115
5165 952

1383 1308
5043 5047

283
1095
1093
135
2708
2734
942
931
958
1298
cl168

135
1011
111
475
2715
2728
5054
5056
955
1299
5068

475
1028
116
262
3501
1413
958
5059
117
1219
cl118

113
270
290
269
655
1445
952
5061
412
1030
5042

1008 1028
280 116
112 113
1062 411
272 1032
1408 1411
5165 117
5062 5052
5053 5054
1418 1383
5067 5049

2001
266
128
290
1377
1410
955
724
5058
1299
c204

missing observations

117
117
126
130
1028
1409
5055
5066
5057
1308
5070

1117 1438
113 112

127 141

272 1096
1250 1051
1377 1492
5060 412

5050 2316
5115 5056
1219 1456
c266 c203

1083
130

266

1102
1293
1251
5053
5055
5060
5045
5069

1008 1011 1013 1014 1015 1016 1027 1028 1030 1032 1051 1052 ...

dim(attenu_new)

[1] 166

5
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1

summary (attenu_new)

event mag
Min. : 1.00 Min. :5.000
1st Qu.: 9.00 1st Qu.:5.300
Median :18.00 Median :6.100
Mean :14.31 Mean :6.064
3rd Qu.:20.00 3rd Qu.:6.600
Max. :23.00 Max. :7.700
accel
Min. :0.0030
1st Qu.:0.0400
Median :0.1100
Mean :0.1462
3rd Qu.:0.2000
Max. :0.8100

Explore individual variables

par (mfrow = c(1,2))
w = table(attenu_new$event)

barplot(w, xlab = "event ID", width

col = "grey")

barplot(w, ylab = "event ID", width

station

117
1028
113
112
135
475

col = "blue", horiz = TRUE)

(Other) : 14
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]

25
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event ID

c(1,2))

par (mfrow =
attenu_new$ma

1

g

2

[11 7.07.47.47.47.47.47.47.47.47.47.45.36.16.16.16.16.16.1

[19] 6.1 6.1 6.1 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 5.6 5.7 5.3 5.3

[37] 5.3 5.3 5.3 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6

[55] 6.6 6.6 6.6 6.6 6.6 6.6 6.6 5.3 7.7 7.7 7.7 6.2 5.6 5.65.25.25.25.2

[73] 6.0 6.0 6.0 6.05.1 5.1 7.6 7.65.85.85.85.85.85.85.85.85.85.8

[91] 5.8 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
[109] 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

[127] 5.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.8 5.8 5.8 5.8 5.8 5.8 5.8 6.5 5.5 5.5

[145] 5.5 5.5 5.5 5.55.35.35.35.35.35.35.35.35.35.35.35.35.35.3

[163] 5.3 5.3 5.3 5.3

n ll)

"Moment Magnitude", main

g, xlab

hist(attenu_new$ma

1

"Moment Magnitude", main

g, xlab

probability = TRUE)

hist(attenu new$ma

3

4
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par (mfrow = c(1,2))
hist(attenu_new$mag, xlab = "Moment

probability = TRUE)
boxplot(attenu_new$mag, horizontal
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Magnitude", main = " ",

= TRUE, 1lwd = 2,

xlab = "Moment Magnitude")
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par (mfrow = c(1,2))
hist(attenu_new$dist, probability = TRUE,
xlab = "Station-hypocenter distance (km)", main = "")
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4 boxplot(attenu_new$dist, xlab = "Station-hypocenter distance (km)",

I I I I I I I I I
0 100 300 0 100 300

5 horizontal = TRUE, lwd = 2, col = "darkgrey")
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1 par(mfrow = c(1,2))
> hist(attenu_new$accel, probability = TRUE,

3 xlab = "Peak acceleration (g)", main = "")
4 boxplot(attenu_new$accel, xlab = "Peak acceleration (g)",
5 horizontal = TRUE, lwd = 2, col = "darkgrey")
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Important functions

e complete.cases, dim, which
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s summary
e boxplot, hist, barplot

The cars dataset

The data give the speed of cars and the distances taken to stop. Note that the data were
recorded in the 1920s (Ezekiel 1930).

# datasets::cars

head(cars)
speed dist
1 4 2
2 4 10
3 7 4
4 T 22
5 8 16
6 9 10

tail (cars)

speed dist
45 23 54
46 24 70
47 24 92
48 24 93
49 24 120
50 25 85

class(cars)

[1] "data.frame"

dim(cars)

[1] 50 2
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names (cars)

[1] "speed" "dist"

complete.cases(cars)

(1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[46] TRUE TRUE TRUE TRUE TRUE

The function complete.cases() returns FALSE if there is any row with at least one variable
information is missing. Also try using !complete.cases().

Basic data exploration
Looking at individual variables is always suggested as a part of the EDA.

par (mfrow= c(2,3))
boxplot(cars$speed, col = "grey", lwd = 2,
xlab = "speed (mph)")
hist(cars$speed, probability = TRUE, col = "grey",
xlab = "speed (mph)", main = "")
plot(density(cars$speed), main = "speed (mph)")
rug(jitter(cars$speed))
boxplot(cars$dist, col = "grey", lwd = 2,
xlab = "Stopping distance (ft)")
hist(cars$dist, probability = TRUE, col = "grey",
xlab = "Stopping distance (ft)", main = "")
plot(density(cars$dist), main = "Stopping distance (ft)")
rug(jitter(cars$dist))
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We can use the shapiro.test() function to test whether the data is normally distributed.

shapiro.test(cars$speed)

Shapiro-Wilk normality test

data: cars$speed
W = 0.97765, p-value = 0.4576

shapiro.test(cars$dist)

Shapiro-Wilk normality test

data: cars$dist
W = 0.95144, p-value = 0.0391
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From the output, at 5% level of significance, we reject the null hypothesis for the variable
Stopping distance (ft) that it is normally distributed using Shapiro Wilks test Royston (1995).
However, it is important to note that the p-value is 0.0391, therefore, we can not reject it at
1% level of significance.

A natural question arises how Stopping distance (ft) varies as a function of speed (mph). First
let us explore the scatter plot between these two variables.

par(mfrow = c(1,1))

plot(cars$speed, cars$dist, type = "p", pch = 19,
col = "darkgrey", ylab = "Stopping distance (ft)",
xlab = "speed (mph)")
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To explore some kind of linear relationship between Stopping distance and Speed, we first
check whether there is significant correlation between them. Therefore, we test the following
hypothesis for the correlation coefficient p = Corr(dist, speed)

Hy,: p=0 against H;:p#0.

The test is performed using the function cor.test().

cor (cars$speed, cars$dist)

[1] 0.8068949
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cor.test(cars$speed, cars$dist)

Pearson's product-moment correlation

data: cars$speed and cars$dist
t = 9.464, df = 48, p-value = 1.49e-12
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.6816422 0.8862036
sample estimates:
cor
0.8068949

fit = Im(dist ~ speed, data = cars)
summary (fit)

Call:
Im(formula = dist ~ speed, data = cars)

Residuals:
Min 1Q Median 3Q Max
-29.069 -9.525 -2.272 9.215 43.201

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123 x*
speed 3.9324 0.4155 9.464 1.49e-12 *xx
Signif. codes: O '**x' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' '

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

plot(cars$speed, cars$dist, type = "p", pch = 19,
col = "darkgrey", ylab = "Stopping distance (ft)",
xlab = "speed (mph)")

abline(fit, col = "red", lwd = 3, 1ty = 2)
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Figure 1: Fitting of the simple linear regression model.

e beta-coefficient of speed is statistically significant, which means the stopping distance
depends on speed.

e The Multiple R-squared = 0.6511, which means that approximately 65% of the variability
in dist can be explained by the the variable speed through a linear function.

1 coefficients(fit)

(Intercept) speed
-17.579095 3.932409

In this problem, we have assumed a linear relationship between the dist and speed. However,
we do not know whether the linearity assumption is a legitimate choice to approximate the

true relationship (which we do not know). We do some diagnostic tests to check whether the
linearity assumption is tenable.

1 par(mfrow = c(2,2))
> plot(fit)
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Figure 2: Regression diagnostic plot for the simple linear regression. The top panel indicates
the existence of outlying observations, particularly the row numbers 23, 35 and 49

par (m
error

have been identified as the outlying observations.

frow = ¢(1,3))

= residuals(fit)

# residuals

hist(error, probability = TRUE, xlab = expression(widehat(epsilon)),

main = "")

boxplot(error, xlab =

expression(widehat (epsilon)),

lwd = 2, col = "darkgrey")
library(car)
qgqPlot (error, ylab = expression(widehat(epsilon)))
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Figure 3: The car package has been used to draw the quantile plot the plots empirical quantiles
of a variable against theoretical quantiles of a comparison distribution (here it is
normal)(Fox 2016).

[1] 49 23

o There may be existence of nonlinearity.
e Regression diagnostics gave some outlying observations.

You can possibly remove those outliers and perform a linear regression, or you can go for a
quadratic regression.

Quadratic fitting

We are fitting the following quadratic polynomial equation

dist = B, + B, x speed + 5 X speed”.

Using the following R Codes, we can obtain the least squares estimate of the coefficients
Bos B1s Pa- The symbol I(-) is used as wrapper for polynomial terms to create the formula for
the 1Im() function.

par (mfrow = c(1,1))

fit2 = 1m(dist ~ speed + I(speed”2), data = cars)
summary (£it2)
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Call:
Im(formula = dist ~ speed + I(speed™2), data = cars)

Residuals:
Min 1Q Median 3Q Max
-28.720 -9.184 -3.188 4.628 45.152

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 2.47014  14.81716 0.167 0.868
speed 0.91329 2.03422  0.449 0.656
I(speed™2) 0.09996 0.06597 1.515 0.136

Residual standard error: 15.18 on 47 degrees of freedom
Multiple R-squared: 0.6673, Adjusted R-squared: 0.6532
F-statistic: 47.14 on 2 and 47 DF, p-value: 5.852e-12

coef (£fit2)

(Intercept) speed I(speed”2)
2.4701378 0.9132876 0.0999593

dist_hat = coef(fit2) [1] + coef(fit2) [2]*cars$speed + coef (fit2) [3]*cars$speed™2

plot(cars$speed, cars$dist, type = "p", pch = 19,
col = "darkgrey", ylab = "Stopping distance (ft)",
xlab = "speed (mph)")
abline(fit, col = "red", lwd = 3, 1lty = 2)
lines(cars$speed, dist_hat, type = "1", col= "blue",
lud = 3)
legend("topleft", legend = c("linear", "quadratic"),
col = c("red", "blue"), 1lwd = c(3,3),
bty = "a", 1ty = c(2,1))
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Regression diagnostic for quadratic regression

par (mfrow = c(1,3))
error = residuals(fit2)
hist(error, probability = TRUE, xlab = expression(widehat(epsilon)),
main = "")
boxplot(error, xlab = expression(widehat(epsilon)),
lwd = 2, col = "darkgrey")
library(car)
qqPlot (error, ylab = expression(widehat (epsilon)))
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We can obtain the diagnostic plot using the plot () function.

par (mfrow = c(2,2))
plot(£fit2)
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Figure 4: Regression diagnostc for the quadratic function fitting. In fact, the Q-Q Residuals
plot gave more number of outliers and to some extent we get a feeling that quadratic
regression might not be a good option as the there is deviance from the normality
of residuals. In addition, the residuals versus fitted values plot provides a slight
indication of heteroschedasticity.

There seem to be slight improvement using a quadratic equation than a linear equation. How-
ever, it can be statistically check whether this increment is statistically significant or not. The
function anova() is used to compare the performance of fitting exercises using two different
functions.
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anova(fit, fit2)

Analysis of Variance Table

Model 1: dist ~ speed
Model 2: dist ~ speed + I(speed”2)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 48 11354
2 47 10825 1 528.81 2.296 0.1364

As per the qqPlot () function from the car package, two data points (row number 23 and 49)
have been identified as outliers leading to deviation from the normality of the residuals. Let
us remove them.

fit_new = Im(dist ~ speed, data = cars[-c(23, 35, 49),])

summary (fit_new)

Call:
Im(formula = dist ~ speed, data

cars[-c(23, 35, 49), 1)

Residuals:
Min 1Q Median 3Q Max
-25.032 -7.686 -1.032 6.576 26.185

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -15.1371 5.3063 -2.853 0.00652 **
speed 3.6085 0.3302 10.928 3e-14 *xxx
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11.84 on 45 degrees of freedom
Multiple R-squared: 0.7263, Adjusted R-squared: 0.7202
F-statistic: 119.4 on 1 and 45 DF, p-value: 3.003e-14

par(mfrow = c(1,1))

plot(cars$speed, cars$dist, type = "p", pch = 19,
col = "darkgrey", ylab = "Stopping distance (ft)",
xlab = "speed (mph)")

abline(fit, col = "red", lwd = 3, lty = 2)
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¢ abline(fit_new, col = "magenta", lwd = 3, 1t
7 points(cars[c(23,35,49),], col = "red", cex
8 lwd = 3, pch = 4)
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Figure 5: The dotted magenta line indicates the fitted linear regression line after removing the
three outlying observations as identified by the regression diagnostics.

1 par(mfrow = c(2,2))
2 plot(fit_new)
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Figure 6: Regression diagnostic for the linear regression model after removing three outlying
observations.

Although after removing the designated outliers from the regression diagnostic plots, we ob-
tained a significant improvement in the R? values (approx 75%), however, the diagnostic plot
of the new regression fit, gives stronger evidence towards the existence of nonlinear relation-
ship.

fit3 = Im(dist ~ speed + I(speed™2) + I(speed”3) , data = cars)

summary (£1t3)

Call:
Im(formula = dist ~ speed + I(speed”2) + I(speed”3), data = cars)

Residuals:

Min 1Q Median 3Q Max
-26.670 -9.601 -2.231 7.075 44.691
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Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -19.50505  28.40530 -0.687 0.496
speed 6.80111 6.80113 1.000 0.323
I(speed™2) -0.34966 0.49988 -0.699 0.488
I(speed”™3) 0.01025 0.01130 0.907 0.369

Residual standard error: 15.2 on 46 degrees of freedom
Multiple R-squared: 0.6732, Adjusted R-squared: 0.6519
F-statistic: 31.58 on 3 and 46 DF, p-value: 3.074e-11

dist_hat = predict(fit3)
print(dist_hat)

1 2 3 4 5 6
2.760981 2.760981 14.485912 14.485912 17.774747 20.856365
9 10 11 12 13 14
23.792277 26.643997 26.643997 29.473036 29.473036 29.473036
17 18 19 20 21 22
32.340907 32.340907 32.340907 35.309122 35.309122 35.309122
25 26 27 28 29 30
38.439194 38.439194 41.792634 41.792634 45.430956 45.430956
33 34 35 36 37 38
49.415670 49.415670 49.415670 53.808290 53.808290 53.808290
41 42 43 44 45 46
58.670328 58.670328 58.670328 70.048706 76.688071 84.042903
49 50
84.042903 92.174715

par (mfrow = c(1,1))
plot(cars$speed, cars$dist, type = "p", pch = 19,
col = "darkgrey", ylab = "Stopping distance (ft)",
xlab = "speed (mph)")
abline(fit, col = "red", lwd = 2)
lines(cars$speed, predict(fit2), col = "magenta", lwd = 2)
lines(cars$speed, predict(£fit3), col = "blue", lwd = 2)

legend("topleft", legend = c("linear", "quadratic", "cubic")
col = c("red","magenta", "blue"), lwd = c(2,2,2),
bty = llnll)
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Let us check how the R? values changes as the degree of the polynomial increases.

fit4 = Im(dist ~ speed + I(speed™2) + I(speed”3) + I(speed”4) ,
data = cars)
summary (fit4)

Call:
Im(formula = dist ~ speed + I(speed™2) + I(speed”3) + I(speed”4),
data = cars)

Residuals:
Min 1Q Median 3Q Max
-23.701 -8.766 -2.861 7.158 42.186

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 45.845412 60.849115 0.753 0.455
speed -18.962244 22.296088 -0.850 0.400
I(speed”2) 2.892190 2.719103 1.064 0.293
I(speed~3) -0.151951 0.134225 -1.132 0.264
I(speed4) 0.002799 0.002308 1.213 0.232

Residual standard error: 15.13 on 45 degrees of freedom

Multiple R-squared: 0.6835, Adjusted R-squared: 0.6554
F-statistic: 24.3 on 4 and 45 DF, p-value: 9.375e-11
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fits = Im(dist ~ speed + I(speed”2) + I(speed”3) + I(speed™4) + I(speed”5) ,

data = cars)
summary (£it5)

Call:

Im(formula = dist ~ speed + I(speed™2) + I(speed”3) + I(speed™4) +

I(speed”5), data = cars)

Residuals:
Min 1Q Median 3Q Max
-23.370 -8.165 -2.395 7.294 42.342

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.650e+00 1.401e+02 -0.019 0.985

speed 5.484e+00 6.736e+01 0.081 0.935
I(speed™2) -1.426e+00 1.155e+01 -0.124 0.902
I(speed”™3) 1.940e-01 9.087e-01 0.214 0.832
I(speed™4) -1.004e-02 3.342e-02 -0.300 0.765
I(speed”b) 1.790e-04 4.648e-04 0.385 0.702

Residual standard error: 15.27 on 44 degrees of freedom
Multiple R-squared: 0.6846, Adjusted R-squared: 0.6487
F-statistic: 19.1 on 5 and 44 DF, p-value: 4.65e-10

R2_fit = summary(fit)$r.squared

R2_fit2 = summary(fit2)$r.squared
R2_fit3 = summary(fit3)$r.squared
R2_fit4 = summary(fit4)$r.squared
R2_fit5 = summary(fit5)$r.squared

adjR2_fit = summary(fit)$adj.r.squared

adjR2_fit2 = summary(fit2)$adj.r.squared
adjR2_fit3 = summary(fit3)$adj.r.squared
adjR2_fit4 = summary(fit4)$adj.r.squared
adjR2_fith = summary(fitb)$adj.r.squared

R2_vals = c(R2_fit, R2_fit2, R2_fit3, R2_fit4, R2_fith)

adjR2_vals = c(adjR2_fit, adjR2_fit2, adjR2_fit3,
adjR2_fit4, adjR2_fith)

plot(1:5, R2_vals, type = "b", pch = 19, cex = 1.3,
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1lwd =

xlab

2, col =

"darkgrey", ylab = expression(R"2),

= "degree (p)", ylim = c(0.6, 0.7))
lines(1:5, adjR2_vals, col = "black", lwd = 2, type = "b", pch = 19)
legend ("topleft", c("R squared", "adj R squared"),

col = c("darkgrey", "black"), lwd = c(2,2), bty = "n")
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anova(fit, fit2, fit3, fit4, fith)

Analysis

Model 1
Model 2
Model 3:
Model 4
Model 5
Res.Df

gD W N
i
(o))

of Variance Table

. dist
. dist

dist

: dist
: dist

speed
speed
speed
speed
speed

RSS Df Sum

11354
10825
10634
10298
10263

[ S S =

I(speed™2)

I(speed™2) + I(speed”3)

I(speed™2) + I(speed”3) + I(speed”4)

I(speed™2) + I(speed”3) + I(speed”4) + I(speed”5)
of Sq F Pr(>F)

+ o+ 4+ o+

528.81 2.2671 0.1393
190.35 0.8161 0.3712
336.55 1.4428 0.2361
34.59 0.1483 0.7020
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Leverage and Influence Plot

par (mfrow = c(1,2))
plot(cooks.distance(fit), col = "darkgrey", pch = 19, cex = 1.1)
dfbetaPlots(fit, pch = 19, col = "grey", cex = 1.4)
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A cross verification from the numerical method lectures

X = cbind(rep(1,nrow(cars)), cars$speed)

print (X)
(.11 [,2]
[1,] 1 4
[2,] 1 4
[3,] 1 7
[4,] 1 7
[5,] 1 8
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[45,]
[46,]
(47,1
[48,]
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[49,] 1 24
[50,] 1 25

1 Y = cars$dist
2 beta_star = (solve(t(X)%*%X))%*%t (X)%*%Y
3 print(beta_star)

(,1]
[1,] -17.579095
[2,] 3.932409

Questions

o Using the airquality dataset, answer the following descriptive statistics questions:

— Using help(airquality) command obtain basic description of the data and also
check the source of the data set.

— Calculate the mean, median, standard deviation, and range of the Ozone variable.

— How many missing values are there in the Ozone variable?

— Draw boxplot and histograms of each variable present in the airquality data.
Using boxplot in R identify the outliers.

— Calculate the average Temp for each month (May through September).

— Which month recorded the highest average Temp?

— What is the correlation between Ozone and Solar.R? Interpret the result.

— Create a scatter plot of Wind vs. Temp. Does the plot suggest a relationship?

— Plot a histogram of the Wind variable. Comment on the shape of the distribution.

— What is the interquartile range (IQR) of Wind?

— Identify the percentage of rows with missing values in the dataset.

— Provide one strategy to handle missing values in the 0zone variable and explain its
implications.

e The rivers dataset contains the lengths (in miles) of 141 major rivers in North America.

— What is the mean, median, and standard deviation of the river lengths?

— What is the range (minimum and maximum) of the river lengths?

— Create a histogram of the river lengths. What is the shape of the distribution (e.g.,
symmetric, skewed)?

— How many rivers are longer than 1,000 miles?

— Create a boxplot of the river lengths. Are there any outliers?

— What is the interquartile range (IQR) of the river lengths?

— What percentage of rivers fall within one standard deviation of the mean?
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— Apply a log transformation to the river lengths. How does the histogram of the
transformed data compare to the original?

— Why might a log transformation be useful for this dataset?

— What is the mean length of the 10 shortest rivers?

— What is the mean length of the 10 longest rivers?

— How does the variability (standard deviation) compare between the shortest and
longest rivers?

— Create a density plot of the river lengths. How does it compare to the histogram?

— Opverlay a rug plot on the histogram. Does it provide additional insights about the
data distribution?

— Compare the distribution of river lengths to a normal distribution using a Q-Q plot.
What do you observe?

— Test the normality of the river length data using the Shapiro-Wilk test. What is
the result?

— Identify any regions or patterns in the data that suggest natural groupings or clus-
ters of river lengths.

e The EuStockMarkets dataset contains daily closing prices of major European stock in-
dices from 1991 to 1998.

— What are the mean, median, standard deviation, and range of closing prices for
each stock index (DAX, SMI, CAC, and FTSE)?

— Which stock index has the highest average closing price over the entire dataset?

— What is the minimum and maximum closing price for each index?

— Create histograms for the closing prices of each stock index.

— Which indices show skewed distributions?

— Plot density plots for the indices. Do they suggest unimodal or multimodal distri-
butions?

— Use boxplots to compare the distributions of the four stock indices. Are there any
outliers?

— (Temporal trends) Plot the time series of the closing prices for each index. What
trends do you observe?

— Identify the periods of significant increases or decreases for each stock index.

— Which index shows the highest volatility (largest fluctuations) over time?

— (Correlation analysis) Compute the pairwise correlations between the indices.
Which pair of indices has the strongest correlation?

— Create a scatterplot matrix of the indices. Do the relationships appear linear?

— Conduct a hypothesis test to determine if the correlation between DAX and CAC
is significantly different from zero.

— (Volatility) Calculate the daily returns ((P, — P,_;)/P,_;) for each index. Which
index has the highest average daily return?

— Plot the time series of daily returns. Which index shows the most frequent large
spikes?

— Identify the days with the largest positive and negative returns for each index.
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— Use Q-Q plots to assess whether the closing prices of each index follow a normal
distribution. Which indices deviate most from normality?

— Suggest real-world economic events during the dataset period (1991-1998) that
might have influenced the trends in these indices.

The C02 dataset contains data on carbon dioxide uptake in grass plants under varying
environmental conditions. The C02 uptake of six plants from Quebec and six plants from
Mississippi was measured at several levels of ambient CO2 concentration. Half the plants
of each type were chilled overnight before the experiment was conducted.

— What is the mean, median, standard deviation, and range of the variable uptake?

— What is the mean and standard deviation of conc across all plants?

— Which plant has the highest carbon dioxide uptake (uptake)?

— (Comparison among groups) What is the average uptake for each Type of plant
(Quebec and Mississippi)?

— Compare the mean and median uptake for plants under different Treatment condi-
tions (nonchilled vs chilled).

— Calculate the mean uptake for each combination of Type and Treatment.

— Which group has the highest mean uptake?

— (Understanding individual distributions) Create histograms of uptake for the two
Type groups (Quebec and Mississippi).

— How do the distributions differ?

— Plot a boxplot of uptake by Treatment. Are there any outliers?

— Create density plots of uptake for the two Type groups. What do you observe about
their shapes?

— Create a scatter plot of uptake vs. conc. What kind of relationship do you observe?

— Fit a linear model of uptake as a function of conc. What does the slope of the line
indicate?

— Does the relationship between uptake and conc differ across Type or Treatment?
Visualize and explain.

— (Advanced Visualizations) Create a faceted scatterplot of uptake vs. conc by Type
and Treatment. What patterns emerge?

— Create a heatmap of the average uptake for each combination of Type, Treatment,
and conc ranges. What does this visualization reveal?

— Plot boxplots of uptake grouped by individual Plant. Which plants have the highest
median and variability?

— (Transformation) Apply a log transformation to uptake. How does the distribution
change?

— Group conc into intervals (e.g., 0-200, 201-400, etc.) and calculate the average
uptake for each interval. What trend do you observe?

C02[1:42, ]
C02[43:84, ]
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par(mfrow = c(1,2))
plot (DQ$conc, DQ$uptake, type = "p",

col
pch 19, cex = 1.2, main = "Quebec",
xlab = "Conc", ylab = "Uptake")

legend("bottomright", legend = c("nonchilled",

col = c("red", "magenta"), pch = c(19,
cex = c(1.2, 1.2), bty = "n")
plot (DM$conc, DM$uptake, type = "p",

col
pch
xlab = "Conc", ylab = "Uptake")

legend("bottomright", legend = c("nonchilled",

col = c("red", "magenta"), pch = c(19,
cex = c(1.2, 1.2), bty = "n")

Quebec
°
°
21 2388
OSee’
L o | ee i)
g @ ° [
o o
-) [ -)
o | e
N -
® nonchilled
o ® chilled
—

I I I I I
200 600 1000

Conc

253

ifelse(DQ$Treatment =="nonchilled",

ifelse(DQ$Treatment =="nonchilled",
19, cex = 1.2, main = "Mississippi'
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Regression Models and Interdisciplinary
Applications

Least squares method

At the outset of this chapter, I wish to share a note of pedagogical intent, particularly for my
fellow teachers. Linear regression is often introduced in classrooms through the use of built-in
functions and statistical packages in R or other software. However, the demonstrations in this
book deliberately avoid reliance on such packages. Instead, we focus on applying the formulas
derived by students themselves during classroom instruction.

The core idea is to bridge the gap between students’ immediate mathematical understanding
and real-world datasets. As a result, many of the formulas in this chapter are expressed
directly using the design matrix, reflecting the theoretical framework students have worked
with in class.

This approach was developed and implemented for the MDM students of the Machine Learning
and Artificial Intelligence minor at ICT, Mumbai (batch 2023-2027). In practice, I observed
that when students used R in the lab, they tended to memorize functions such as 1m() and
summary () without grasping how these relate to the theory learned in class. R became, for
them, a disconnected tool—separate from the mathematical foundation.

Therefore, throughout this chapter, we rely on formulas derived and understood by the students
themselves. They have not only learned these derivations but also implemented them in the
classroom, reinforcing the deep connection between theory and computation.

Suppose that we are given freezing point of different ethylene glycol - water mixtures. We are
interested in determining the relationship between the freezing point of ethylene glycol and
the weight percent of ethylene glycol in a water solution shown in the following data:

glycol = c(0.00, 5.09, 11.3, 15.47, 20.94, 30.97, 31.22,
36.62, 42.76, 48, 49.34, 51.36, 56.36, 59.05)
freezing point = c(273.15, 267.46, 258.5, 251.72, 241.58,
225.28, 225.49, 228.03, 229.89, 230.5,
230.54, 230.37, 232.12, 234.62)
data = data.frame(glycol, freezing point)

254



Suppose that we want to address questions of the form:

e When we have 33.3 wt% of ethylene glycol in a solution, what is the freezing point?

e What is the uncertainty associated with the prediction of the freezing point?

First we check out basic scatterplot which usually guide us to choose appropriate equation
for the modelling the relationship between the response and the predictor variable(s). The
scatterplot indicates that a linear relationship does not seem to an appropriate choice and a
higher order polynomial may need to be considered. However, as a starting point, we shall
discuss the least squares method for linear function and extrapolate those ideas for polynomial
equations.

1 plot(glycol, freezing_point, type = "p", pch = 19,
2 col = "darkgrey", xlab = "Mole percent ethylene glycol",
3 ylab = "Freezing point (K)", cex = 1.4)

Freezing point (K)
230 240 250 260 270
|

I I I I I I I
0O 10 20 30 40 50 60

Mole percent ethylene glycol

Figure 1: Scatterplot of the predictor and the response variable.

Using the summary function, we can obtain a basic descriptive summary of the variables in the
given data set.

1 summary(data) # basic data summary

glycol freezing_point
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Min. : 0.00 Min. :225.3
1st Qu.:16.84 1st Qu.:230.0
Median :33.92 Median :231.3
Mean :32.75 Mean :239.9
3rd Qu.:49.01 3rd Qu.:249.2
Max. :59.05 Max. :273.1

Minimization of the error sum of squares

In the above plot, it is evident that the relationship does not seem to be linear. However, at
a starting point, we shall try to fit a linear function of the form

Yy ="by+bx +e,

where the parameters b, and b; are to be estimated from the given data. The term e denotes
the error which typically denotes the different between the observed response and the predicted
values obtained by the fitted equation.

Suppose that we denote the response (freezing point) using the symbol y and Mole percent
ethylene glycol is represented using the symbol x. There are n = 14 data points. The
expression for the error sum of squares is given by

< 2
E(by,b,) = Z (i — bo — by ;)
i=1
We want to choose values of b, and b; so that E(by, ;) is minimized. Let us try to have some
visual display of the error sum of squares as a function of b, and b,.

ESS = function(b0,bl1){
return(sum((freezing_point - b0 - bl*glycol) ~2))
}

Let us plot the surface with respect to b, and b;.

b0O_vals = seq(-100, 300, by = 2)
bl_vals = seq(-100, 300, by = 2)
ESS_vals = matrix(data = NA, nrow = length(bO_vals), ncol = length(bl_vals))
for(i in 1:length(b0_vals)){
for(j in 1:length(bl_vals)){
ESS_vals[i,j] = ESS(bO_vals[i], bl_vals[jl)
}

}
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o library(plot3D)
1 persp3D(b0_vals, bl_vals, ESS_vals, phi = 20, theta = 120,
12 xlab = "bO", ylab = "bl", zlab = "ESS")

Jun

[

1.5e

gs3

1.0e

5.0e

07

Figure 2: The shape of the residual sum of squares as a function of the model parameters. The
right panel shows the surface with colour gradients.

Matrix Notation

We adopt some matrix notation for computation

o The response variable Y = (y;,¥s,...,9,) . Therefore, Y, ., is a column vector and n is
the number of rows in the data.

o The design matrix X. In this case, we have the predictor variable x = (x4, zo, ..., x,,)’,
a column vector. If the linear equation contains an intercept term b, we consider the
design matrix as

1 =
Y- 1 =z,
1 =

o Parameter vector b = (b, b;)” which is a 2-dimensional column vector.
The linear model now can be represented as

Y =Xb
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To find the best choice of b, we need to minimize the error sum of squares with respect to b
and in matrix notation the error sum of squares is given by

ESS(b) = (Y — Xb) (Y — Xb)

We compute %ESS(I)) and equal to zero which gives the system of linear equations as (in
matrix form)

X'Y = (X' X)b
If det(X’'X) # 0, then the least squares estimate of b is obtained as

b= (X'X)'X'Y

Y = freezing_point
X = cbind(rep(1l, length(Y)), glycol)
print (X)
glycol
[1,1 1 0.00
[(2,] 1 5.09
[3,1] 1 11.30
[4,] 1 15.47
(5,1 1 20.94
(6,1 1 30.97
(7,1 1 31.22
[8,] 1 36.62
9,1 1 42.76
[10,]1 1 48.00
(11,1 1 49.34
[12,] 1 51.36
[13,] 1 56.36
[14,]1 1 59.05

b_hat = (solve (t(X)%*%X))%*%t (X)%*xhY
print (b_hat)

[,1]
262.2041053
glycol -0.6796534
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plot(glycol, freezing point, type = "p", pch = 19,
col = "darkgrey", xlab = "Mole percent ethylene glycol",
ylab = "Freezing point (K)", cex = 1.4)
curve(b_hat[1]+b_hat[2]*x, add = TRUE, col = "red", lwd = 2)
Y_predicted = X%*Jb_hat
points(glycol, Y_predicted, pch = 19,
col = "blue", cex = 1.4)
legend ("topright", bty = "n", legend = c("observed", "predicted"),
col = c("darkgrey", "blue"), pch = c(19,19),
cex = c(1.4, 1.4), 1lud = 1, 1ty = c(NA, NA))

# prediction at glycol = 33.3

glycol_star = 33.3

Y_star = b_hat[1]+b_hat[2]*glycol_star

points(glycol_star, Y_star, pch = 18, col = "magenta", cex = 1.5)

observed
® predicted

Freezing point (K)
230 240 250 260 270
|

I I I I I I
0O 10 20 30 40 50 60

Mole percent ethylene glycol

Figure 3: The least square regression plot of a linear function

error = Y - Y_predicted # computation of error
ess_hat = sum(error~2)
print(ess_hat)

[1] 1080.218
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par(mfrow = c(1,2))
plot(Y_predicted, error, pch = 19, col = "red",
xlab = expression(widehat(Y)), ylab = expression(widehat(e)))
abline(h = 0, col = "grey", lwd = 2, 1ty = 2)
hist(error, probability = TRUE, xlab = expression(widehat(e)))

Histogram of error

[

[ ]
0.06

I

(v

Density
0.03
|

-15
I
®
0.00
I

Figure 4: Distribution of error for the fitted linear equation. The desiarable property is the
the histogram should be well approximated by the normal distribution.

A patterned relationship between the residuals and the fitted values gives an indication of the
possible existence of nonlinear relationship between the predictor and the response.

Estimating the parameters using R

fit = Im(glycol ~ freezing point, data = data)
summary (fit)

Call:
Im(formula = glycol ~ freezing point, data = data)

Residuals:
Min 1Q Median 3Q Max
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-16.4434 -7.4094 -0.0959 6.8410 20.9756

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 272.6694 47 .6565 5.722 9.58e-05 *x*x
freezing_point -0.9999 0.1982 -5.045 0.000287 x**x

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

Residual standard error: 11.51 on 12 degrees of freedom
Multiple R-squared: 0.6796, Adjusted R-squared: 0.6529
F-statistic: 25.45 on 1 and 12 DF, p-value: 0.000287

Least Squares for quadratic function

We consider the fitting of function of the form
y:b0+b1$+b2$2+6.

We need to minimize the error sum of squares

ESS(by, by, by) = Z(?Jz — by — byx; — byx})?.

i=1

The design matrix X is given by

and the parameter vector b = (b, by, b,)".

1 Y = freezing point
2 X = cbind(rep(1, length(Y)), glycol, glycol2 = glycol~2)
3 print(X)

glycol  glycol2
0.00 0.0000
5.09 25.9081
11.30 127.6900
15.47 239.3209
20.94 438.4836

[1,]
[2,]
(3,]
[4,]
(5,1

N
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[6,] 1 30.97 959.1409
[7,] 1 31.22 974.6884
[8,] 1 36.62 1341.0244
[9,] 1 42.76 1828.4176
[10,] 1 48.00 2304.0000
[11,1 1 49.34 2434.4356
[12,]1 1 51.36 2637.8496
[13,] 1 ©56.36 3176.4496
[14,]1 1 59.05 3486.9025
b_hat = (solve(t(X)%*%X))%*%t (X)%*hY

cat("Estimated coefficients bO, bl and b2 are")

Estimated coefficients b0, bl and b2 are

print(b_hat)

[,1]

277.47637633

glycol -2.36315724
glycol2  0.02793794

plot(glycol, freezing point, type = "p", pch = 19,
col = "darkgrey", xlab = "Mole percent ethylene glycol",
ylab = "Freezing point (K)", cex = 1.4)

curve(b_hat[1]+b_hat[2]*x + b_hat[3]*x"2,
add = TRUE, col = "red", lwd = 2) # fitted equation
Y _predicted = XJ*%b_hat
points(glycol, Y_predicted, pch = 19,
col = "blue", cex = 1.4)
legend ("topright", bty = "n", legend = c("observed", "predicted"),
col c("darkgrey", "blue"), pch = c(19,19),
c(1.4, 1.4), 1wd = 1, 1ty = c(NA, NA))

cex
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observed
_ ® predicted

Freezing point (K)
230 240 250 260 270
|

Mole percent ethylene glycol

Figure 5: The least squares fitting using a quadratic function

error = Y - Y_predicted # computation of error
ess_hat = sum(error~2) # estimated ESS
print (ess_hat)

[1] 134.2652

par (mfrow = c(1,2))
plot(Y_predicted, error, pch = 19, col = "red",
xlab = expression(widehat(Y)), ylab = expression(widehat(e)))
abline(h = 0, col = "grey", lwd = 2, 1ty = 2)
hist(error, probability = TRUE, xlab = expression(widehat(e)))
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Histogram of error
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Figure 6: Distribution of error for the fitted quadratic equation

Least square method for cubic regression

We consider the fitting of function of the form

y = by + by + byx? + byz® +e.

1 Y = freezing point

2 X = cbind(rep(1, length(Y)), glycol, glycol2 = glycol™2, glycol3 = glycol~3)

3 print(X)

glycol glycol2 glycol3

[(1,] 1 0.00 0.0000 0.0000
2,1 1 5.09 25.9081 131.8722
[3,] 1 11.30 127.6900  1442.8970
[4,] 1 15.47 239.3209 3702.2943
(65,1 1 20.94 438.4836 9181.8466
[6,] 1 30.97 959.1409 29704.5937
(7,1 1 31.22 974.6884 30429.7718
[8,] 1 36.62 1341.0244 49108.3135
[9,] 1 42.76 1828.4176 78183.1366
[10,] 1 48.00 2304.0000 110592.0000
(11,1 1 49.34 2434.4356 120115.0525
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[12,] 1 51.36 2637.8496 135479.9555
[13,] 1 56.36 3176.4496 179024.6995
[14,] 1 59.05 3486.9025 205901.5926

b_hat (solve (£t (X) %*%X) ) %*xht (X) %*xhY
cat("Estimated coefficients for b0, bl, b2 and b3 are \n")

Estimated coefficients for bO, bl, b2 and b3 are

print(b_hat)

[,1]

2.760038e+02

glycol -1.985367e+00
glycol2 1.161896e-02
glycol3 1.819175e-04

plot(glycol, freezing_point, type = "p", pch = 19,
col = "darkgrey", xlab = "Mole percent ethylene glycol",
ylab = "Freezing point (K)", cex = 1.4)

curve(b_hat[1]+b_hat[2]*x + b_hat[3]*x~2 + b_hat[4]*x"3,
add = TRUE, col = "red", lwd = 2)

Y _predicted = X/*%b_hat

points(glycol, Y_predicted, pch = 19,
col = "blue", cex = 1.4)

legend("topright", bty = "n", legend = c("observed", "predicted"),
col c("darkgrey", "blue"), pch = c(19,19),

c(1.4, 1.4), 1wd = 1, 1ty = c(NA, NA))

cex
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Mole percent ethylene glycol

Figure 7: The least squares fitting using a cubic function

error = Y - Y_predicted # computation of error
ess_hat = sum(error~2)
print (ess_hat)

[1] 124.0845

par (mfrow = c(1,2))
plot(Y_predicted, error, pch = 19, col = "red",
xlab = expression(widehat(Y)), ylab = expression(widehat(e)))
abline(h = 0, col = "grey", lwd = 2, 1ty = 2)
hist(error, probability = TRUE, xlab = expression(widehat(e)))
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Histogram of error
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Figure 8: Distribution of error for the fitted cubic equation equation

Case Study (Modelling CO2 Uptake in Grass Plants)

In the above discussions, we have not discussed the statistical properties of the estimators of
the parameters for the simple linear regression model. To discuss the statistical properties, we
first need to make some assumptions about the distribution of the data, or more precisely the
response which is expected to change as a function of the input variable.

We consider the CO2 data set available in the datasets package in R and use a smaller part
of the data as demonstration. The CO2 data frame has 84 rows and 5 columns of data from an
experiment on the cold tolerance of the grass species Echinochloa crus-galli. For demonstration
we consider only the uptake of one plant at different concentration level.

head(datasets: :C02)

Plant Type Treatment conc uptake
Qnl1 Quebec nonchilled 95 16.
Qnl Quebec nonchilled 175 30.
Qnl1 Quebec nonchilled 250 34.
Qnl Quebec nonchilled 350 37.
Qnl1 Quebec nonchilled 500 35.
Qnl1 Quebec nonchilled 675 39.

o O WN -
N W N o O
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# help("C0O2")

plot(CO2$conc, CO2$uptake, col = "grey",

pch = 19, cex =1.2)
cor (C02$conc, CO2$uptake)

[1] 0.4851774

data = C02[1:21,c("conc", "uptake")]

head(data)

conc uptake

1 95 16.0
2 175 30.4
3 250 34.8
4 350 37.2
5 500 35.3
6 675 39.2
dim(data)

[1] 21 2

CO2S%uptake

20 30 40

10

I I I I
200 400 600 800

CO2%conc
Figure 9
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We consider the following statistical model which is given by
uptake, [conc; ~ N (b, + by x conc;,0?)

and uptake by the plant are different concentration levels are statistically independent. In
other words, the distribution of uptake at different concentration are independently normally
distributed with constant variance and its expectation varies with the concentration following
a linear function.

o Write down the likelihood function of for estimating the parameters by, b; and o2.

e Analytically derive that the likelihood function is maximized at

% Sm % — % — % 1 ¢ % % 2
b1:Sy, by =y —biz, o :52(%‘—50—(711}‘) )

T =1

where the notations have their usual meaning.
e Using the optim() function in R, maximize the function and report the estimates.

¢ Also report the standard error of the estimators.

The following R codes may be used to compute the estimates.

S_xx = sum((data$conc - mean(data$conc)) 2)
S_yy = sum((data$uptake - mean(data$uptake)) 2)
S_xy = sum((data$conc - mean(data$conc))*(data$uptake - mean(data$uptake)))

bl_star = S_xy/S_xx
bO_star = mean(data$uptake) - bl_star*mean(data$conc)
sigma2_star = sum((data$uptake - bO_star - bl_star*data$conc) "2)/nrow(data)

Using the following R codes, we can draw the fitted line.

plot(data$conc, data$uptake, pch = 19,

col = "red", cex = 1.2)
conc_vals = seq(90, 1010, by = 5) # creating fitted lines
uptake_vals = bO_star + bl_star*conc_vals # predicted uptake values
lines(conc_vals, uptake_vals, 1ty = 2, col = "blue",

lwd = 3) # add fitted line
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Figure 10: The CO2 uptake is modelled as a linear function of the concentration.

In the following, we check whether the model assumptions are met or not.

par (mfrow = c(1,2))
eps_star = data$uptake - bO_star - bl_star*data$conc # error
hist(eps_star, probability = TRUE,

xlab =expression(widehat(epsilon)), main = " ")
curve(dnorm(x, 0, sd = sqrt(sigma2_star)), col = "red",

lwd = 2, add = TRUE)

# test for normality
shapiro.test(eps_star)

Shapiro-Wilk normality test

data: eps_star
W = 0.92759, p-value = 0.1232

plot(data$conc, eps_star, pch 19, col = "red",
lwd = 2, cex = 1.3, ylab = expression(widehat(epsilon)))
abline(h = 0, lwd = 3, col = "darkgrey", lty = 2)
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Figure 11:
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The left panel indicates the distribution of the residuals. A normal density is
overlaid with mean 0 and variance o?+. The right panel depicts the estimated error
at different concentration level. The figure indicates that ath lower concentration
level model predictions have positive bias, means over estimation of the actual
uptake level. The same is observed at the maximum concentration. However,
at the moderate concentration (between 300 - 500), the residuals are positive the
predicted uptake levels seem to underestimate the actual uptake.

More case studies

‘We consider the cars data set.

head(datasets: :cars)

speed dist
1 4 2
2 4 10
3 7 4
4 7T 22
5 8 16
6 9 10
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# help("cars")
names (cars)

[1] "speed" "dist"

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
las = 1, pch = 19, col = "red")

n = nrow(cars) # number of rows
Y = cars$dist # response
# rep(1,n)
120 °
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Figure 12

Linear and quadratic regression

In the following R codes, we build the linear and quadratic regression model using matrix
notations.

X = matrix(data

# print (X)

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
las = 1, pch = 19, col = "red")

c(rep(1,n), cars$speed), nrow = n, ncol = 2)
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b_hat = (solve(t(X)%*%X))%*%t (X)%*%Y
print (b_hat)

[,1]
[1,] -17.579095
[2,] 3.932409

curve(b_hat[1] + b_hat[2]#*x, add = TRUE,
col = "blue", lwd = 2)

# quadratic regression

X = matrix(data = c(rep(l,n), cars$speed, cars$speed”2),
nrow = n, ncol = 3)

# print(X)

b_hat = (solve(t(X)%*%X))%*%t (X)%*%Y
print (b_hat)

[,1]
[1,] 2.4701378
[2,] 0.9132876
[3,]1 0.0999593

curve(b_hat[1] + b_hat[2]*x + b_hat[3]*x~2, add = TRUE,
col = "magenta", lwd = 2)

legend("topleft", legend = c("linear", "quadratic"),
lwd = c(2,2), col c("blue", "magenta"), bty = "n")
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Figure 13: Fitting of linear and quadratic regression equation. For a visual display it seems
that the quadratic equation is a better fit as compared to the linear regression.
However, we shall keep in mind that quadratic equation contains more parameter,
hence it is more complex. After performing apporpriate diagnostics, we should be
able to choose which model should be considered.

Making predictions

# Making predictions (Linear)
par (mfrow = c(1,2))
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
las = 1, pch = 19, col = "red")
X = matrix(data = c(rep(l,n), cars$speed), nrow = n, ncol = 2)
b_hat = (solve(t(X)%*%X))%*xht (X)%*%Y
curve(b_hat[1] + b_hat[2]*x, add = TRUE,
col = "blue", lwd = 2)
H = XVx%(solve (t (X)%*%X) ) %*x%t (X) # Projection Matrix
dist_hat = HJ*%Y
points(cars$speed, dist_hat, col = "green", pch = 19,
cex = 1.2)
legend("topleft", legend = c("observed", "predicted"),
col = c("red", "green"), cex = c(1,1), bty = "n", pch = c(19,19))
cars$dist - dist_hat
(diag(l, nrow = n) - H)%*%Y

e_hat
e_hat
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# print(e_hat)

hist(e_hat, probability = TRUE, xlab = "residuals",
main = "Linear")

shapiro.test(e_hat)

Shapiro-Wilk normality test

data: e_hat
W = 0.94509, p-value = 0.02152

Linear
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Figure 14: The least squares fit of the linear regression model and the predicted values of the
response are shown in green color. The right panel indicates the distribution of the
residuals.

In the following, one can check the properties of the projection matrix H which are H = H
and H?> = H

print (H)
t (H)
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H[34,2] == t(H)[34,2]
sum(abs(H - t(H)) < 107(-3))
sum(abs (H%*%H - H)>10"(-15))

Making predictions (Quadratic)
In the following code, we make the predictions using the quadratic regression model

par (mfrow = c(1,2))

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
las = 1, pch = 19, col = "red")

X = matrix(data = c(rep(1,n), cars$speed, cars$speed”2),

nrow = n, ncol = 3)

b_hat = (solve(t(X)%*%hX))%h*%ht (X)%*%hY

curve(b_hat[1] + b_hat[2]*x + b_hat[3]*x"2, add = TRUE,
col = "magenta", lwd = 2)

H = X)x/(solve (t (X)%*%X) ) %xht (X) # projection matrix

# print (H)

# t(H)

H[34,2] == t(H) [34,2]

(1] TRUE

sum(abs(H - t(H)) < 107(-3))

[1] 2500

sum(abs (H%*%H - H)>10"(-15))

[1] 57

dist_hat = HJ*%Y

points(cars$speed, dist_hat, col = "green", pch = 19,
cex = 1.2)

e_hat = cars$dist - dist_hat

e_hat = (diag(l, nrow = n) - H)%*%Y

# print(e_hat)
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s hist(e_hat, probability = TRUE, xlab = "residuals",
9 main = "Quadratic")
10 shapiro.test(e_hat)

Shapiro-Wilk normality test

data: e_hat
W = 0.93419, p-value = 0.007988
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Figure 15: The least squares fitting by the quadratic regression model is shown magenta color
and predictions are shown in green color. Corresponding histogram of the residuals
of the fitted model is shown in the right panel.

Making predictions (Cubic)

In the following code we use the cubic regression equation to make the predictions.
1 par(mfrow = c(1,2))
2 plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

3 las = 1, pch = 19, col = "red")
4 X = matrix(data = c(rep(1l,n), cars$speed, cars$speed”2, cars$speed”3),
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nrow = n, ncol = 4)
b_hat = (solve(t(X)%*%hX))%h*%ht (X)%*hY
curve(b_hat[1] + b_hat[2]#*x + b_hat[3]*x"2 + b_hat[4]*x"3,
add = TRUE, col = "magenta", lwd = 2)
H = XVx%(solve (t (X)7%*%X) ) %*x¥%t (X)

dist_hat = HY%*%Y

points(cars$speed, dist_hat, col = "green", pch = 19,
cex = 1.2)

e_hat = cars$dist - dist_hat

e_hat = (diag(l, nrow = n) - H)%*LY

# print(e_hat)

hist(e_hat, probability = TRUE, xlab = "residuals",
main = "Cubic")
shapiro.test(e_hat)

Shapiro-Wilk normality test

data: e_hat
W = 0.92868, p-value = 0.004928
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Figure 16: The least squares fitting using the cubic regression model is shown in magenta,
and the corresponding predictions are displayed in green. The histogram of the
residuals from the fitted model is presented in the right panel.

Sensitivity of the estimates

Coming back to the Simple Linear Regression and its dependence on individual data points.
We remove the first observation and obtain the estimates of b, and b, and store it. Then
remove the second row from the data set and compute the parameter estimates and store.
The same has been done for all the rows and we obtain a total of 50 estimates of b = (b, b;)’
and call them as b,_; and b,_; for j € {1,2,...,50}.

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
las = 1, pch = 19, col = "red")
X = matrix(data = c(rep(1l,n), cars$speed), nrow = n, ncol = 2)
b_hat = (solve(t(X)7%*%X))%*x%t (X)%*x%Y
curve(b_hat[1] + b_hat[2]*x, add = TRUE,
col = "blue", lwd = 2)
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H = XYx%(solve (t (X)%*%X))%*%t (X)

b_hat_j = matrix(data = NA, nrow = n, ncol = 2)
for (j in 1:n) {

Y_j = Y[-j]
X_j = X[-3, ]
H_j = X_jUh*%(solve (t (X_j) %*x%X_j)) %*x%t (X_j)

b_hat_j[j, 1 = (solve(t(X_j)%*%X_j))h*%ht (X_j)%*%hY_j

In the following, we plot the deviations of the estimates of b, and b; from the original estimates
obtained using the whole data set.

par (mfrow = c(1,2))

plot(1:n, b_hat_j[,1], col = "red", pch = 19,

xlab = "data index", ylab = expression(hat(b[0-j])))
abline(h = b_hat[1], lwd = 3, col = "magenta", lty = 2)
points(49, b_hat_j[49,1], cex = 2, col = "blue", lwd = 2)

plot(1:n, b_hat_j[,2], col = "red", pch = 19,
xlab = "data index", ylab = expression(hat(b[1-j])))
abline(h = b_hat[2], lwd = 3, col = "magenta", lty = 2)

points (49, b_hat_j[49,2], cex = 2, col = "blue", lwd = 2)
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Figure 17: The estimated coefficients are plotted against each row (after removing it from the
original data). The horizontal dotted magenta line represents the estimates when
the complete data set is used.

From the above figure it is evident that 49th observation has a very high impact on the fitted
regression line. Let us remove it and refit the equations and perform the residual analysis.

Removing 49th observation (the outlier visually)

In the following, we remove the 49th observation manually and check whether

c(1,2))
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
las = 1, pch = 19, col = "red")
points(cars$speed[49], cars$dist[49], pch = 4, 1lwd = 3)
X = matrix(data = c(rep(l,n), cars$speed), nrow = n, ncol = 2)
X_49 = X[-49, ]
Y 49 = Y[-49]
b_hat_49 = (solve(t(X_49)7%*%X_49))%x*%t (X_49)%*%Y_49
curve(b_hat_49[1] + b_hat_49[2]*x, add = TRUE,
col = "blue", lwd = 2)
H_49 = X_49%Y%(solve (t(X_49)%*%X_49))%*%t (X_49)
dist_hat 49 = H_49%x*%Y_49
points(cars$speed[-49], dist_hat_49, col = "green",
1.2)

par (mfrow =

pch = 19,
cex =
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e_hat_49 = cars$dist[-49] - dist_hat_49
e_hat_49 (diag(l, nrow = n-1) - H_49)7%x%Y_49
# print(e_hat_49)

hist(e_hat_49, probability = TRUE, xlab = "residuals",
main = "Linear")
shapiro.test(e_hat_49)

Shapiro-Wilk normality test

data: e_hat_49
W = 0.95814, p-value = 0.07941
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Figure 18: The model predictions by a linear regression model fitted after removing the 49th
row from the data set is shown in green color. The histogram of the residuals is
show in the right panel.

1 Classroom Quiz: Outlier identification

e Remove the 49th observation from the data set and fit both quadratic and cubic
regression equation and check whether the residuals are normally distributed.
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e Try to search for some inbuilt functions in R which may be used to identify the
outliers.

Homework Assignment

Homework: Explore individual variables with appropriate plots Boxplot, histogram, vioplots
and also check outliers from the boxplots if any. The following codes will be useful for the next
step. Also check whether the variables are normally distributed (use shapiro.test). Make
bar plots for the categorical variables. Also make a pie chart wherever appropriate.

library(ISLR)
ISLR: :Auto
head (Auto)
names (Auto)
View(Auto)
help("Auto")
dim(Auto)

boxplot (Auto$displacement, main = "Engine displacement (cu. inches)")
help("boxplot")

hist(Auto$displacement, probability = TRUE,

main = "Engine displacement (cu. inches)")
library(vioplot)
vioplot (Auto$displacement, main = "Engine displacement (cu. inches)")

# Whether the variable is normally distributed
shapiro.test (Auto$displacement)

mean (Auto$displacement)

sd (Auto$displacement)

var (Auto$displacement)
median(Auto$displacement)
library(moments)

skewness (Auto$displacement)

mean ((Auto$displacement - mean(Auto$displacement)) 3)/(sd(Auto$displacement)) 3

# Check in the internet why the difference happend!
class(Auto$displacement)
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# Origin (Actually a categorical variable but coded as numeric)
class(Auto$origin)

unique (Auto$origin)

table (Auto$origin)

barplot (table(Auto$origin), main = "Origin", col = "red")

boxplot (Auto$displacement ~ Auto$origin)
# Make this plot more beautiful

pairs(Auto, col = "darkgrey")
help(pairs) # explor pairs() function

summary (Auto)

# Regression model

plot (mpg ~ displacement, data = Auto, pch = 19,
col = "darkgrey")

plot (Auto$displacement, Auto$mpg)

# Fit a linear regression and quadratic regression equation and perform
# analysis of the residuals and also find if there is some outliers

# Fit a multiple linear regression with mpg as response and
# displacements and weight as the predictors

Understanding correlation

In the following we consider four different cases of simulations of observations from two random
variables X and Y. In each of the case, X and Y are related or not related in some way. In
each case, you can understand on your own how they have been simulated. The following
demonstration will help us to understand the formula of the correlation better which is given

by
R > O
VEl =22 E (v~ )

Whether the correlation is positive or negative, it completely depends of the value of the
denominator which is a sum of the product of two quantities. Let us investigate it closely.
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o For each i € {1,2,...,n}, z; > T or z; < T and therefore z; — T will be positive or
negative, respectively.

e Foreachi € {1,2,...,n},y, > 7ory, <7yand therefore y, —7y will be positive or negative,
respectively.

e Therefore, the sum of the numerator can be expressed into four parts.

n

=By —= >, + >, o+ >+ >

i=1 {tr;<zy;<yt iz >zy;<yt  {vz;<zy>y}  {iz;>z,y,>y}

Basically, if we shift the origin to the point (z,y), then the points will be distributed in four
regions as demonstrated in Figure 19. We consider four cases of data generation process,
viz. case - I: X and Y are independent; case - II: X and Y are negatively correlated; case
- III: X and Y are positively correlated; case - IV: X and Y are negatively correlated. The
corresponding R codes are provided in Listing 0.1.

Listing 0.1 Four different simulation study to generate the (z;,y;) pairs of values using R.

# Case - I

x = rnorm(n = 1000, mean = 0, sd = 1)

y = rnorm(n = 1000, mean = 0, sd = 1)

# Case - II

x = rnorm(n = 1000, mean = 0, sd = 1)

y = -x + rnorm(n = 1000, mean = 0, sd = 1)

# Case - III

x = rnorm(n = 1000, mean = 0, sd = 1)
y = x + rnorm(n = 1000, mean = 0, sd = 1)
# Case - IV

x = rnorm(n = 1000, mean = 0, sd = 1)
y = x"2 + rnorm(n = 1000, mean = 0, sd = 1)

X and Y are independent

par (mfrow = c(1,1))
x = rnorm(n = 1000, mean = 0, sd
y = rnorm(n = 1000, mean = 0, sd

1)
1)
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plot(x,y, pch = 19, col
ylim = c(-5,5))
abline(v = mean(x), col
abline(h = mean(y), col
text (3.5, 3.5, "I", cex
text(-3.5, 3.5, "II", cex

"darkgrey", xlim = c(-5,5),

"magenta", lwd
"magenta", lwd
5)

1.

text(-3.5, -3.5, "III", cex

text (3.5, -3.5, "IV", cex

points(mean(x), mean(y), pch = 19, col

cex = 1.3)

text (4.5, 4.5, "(+,+)", cex

text(-4.5, 4.5, "(-,+)", cex
text(4.5, -4.5, "(+,-)", cex

1.

1

text(-4.5, -4.5, "(-,-)", cex

cor(x,y)

[1] -0.008789047

5)
1.5)
.5)

1.2, col =

3)
3)

"blue",

“blue")

1.2, col = "blue")
1.2, col = "blue")

= 1.2, col = "blue")

title(bquote(rho == . (cor(x,y))))
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p = -0.008789047

Figure 19: The plane is divided into four regions (quadrants). Depending on the location of the
points, the sign of the product (z; —z)(y; —y) varies. From the figure, it is evident
that the data points are distributed almost equally across all four quadrants. As
a result, the number of positive and negative products is approximately balanced,
and neither dominates. Consequently, the numerator in the correlation formula,
representing the sum of these products,is close to zero.

X and Y are negatvely correlated

y = -x + rnorm(n = length(x))

plot(x,y, pch = 19, col = "darkgrey", xlim = c(-5,5),
ylim = c(-5,5))

abline(v = mean(x), col = "magenta", lwd

abline(h = mean(y), col = "magenta", lwd

text (3.5, 3.5, "I", cex 1.5)

text(-3.5, 3.5, "II", cex = 1.5)

3)
3)
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text(-3.5, -3.5, "III", cex = 1.5)
text (3.5, -3.5, "IV", cex = 1.5)
points(mean(x), mean(y), pch = 19, col
cex = 1.3)
text(4.5, 4.5, "(+,+)", cex = 1.2, col = "blue")
text(-4.5, 4.5, "(-,+)", cex = 1.2, col = "blue")
text (4.5, -4.5, "(+,-)", cex = 1.2, col = "blue")
text(-4.5, -4.5, "(-,-)", cex = 1.2, col = "blue")
cor (x,y)

"blue",

[1] -0.7172201

title(bquote(rho == . (cor(x,y))))
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p=-0.7172201

Figure 20: The plane is divided into four regions (quadrants). Depending on the location
of the points, the sign of the product (z; — z)(y;, — y) varies. From the figure,
it is evident that more data points are distributed in the second and the fourth
quadrants. As a result, the number of negative products dominates the positive
products. Consequently, the numerator in the correlation formula, representing the
sum of these products, is negative.

X and Y are positively correlated

y = x + rnorm(n = length(x))

plot(x,y, pch = 19, col = "darkgrey", xlim = c(-5,5),
ylim = c(-5,5))

abline(v = mean(x), col = "magenta", lwd = 3)

abline(h = mean(y), col = "magenta", lwd = 3)

text (3.5, 3.5, "I", cex = 1.5)

text(-3.5, 3.5, "II", cex = 1.5)
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text(-3.5, -3.5, "III", cex = 1.5)
text (3.5, -3.5, "IV", cex = 1.5)
points(mean(x), mean(y), pch = 19, col
cex = 1.3)
text(4.5, 4.5, "(+,+)", cex = 1.2, col = "blue")
text(-4.5, 4.5, "(-,+)", cex = 1.2, col = "blue")
text (4.5, -4.5, "(+,-)", cex = 1.2, col = "blue")
text(-4.5, -4.5, "(-,-)", cex = 1.2, col = "blue")
cor (x,y)

"blue",

[1] 0.7054136

title(bquote(rho == . (cor(x,y))))
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p =0.7054136

(=+) (+.+)

Figure 21: The plane is divided into four regions (quadrants). Depending on the location of
the points, the sign of the product (z; — z)(y; — y) varies. From the figure, it is
evident that more data points are distributed in the first and the third quadrants.
As a result, the number of positive products dominates the negative products.
Consequently, the numerator in the correlation formula, representing the sum of
these products, is positive.

X and Y are nonlinearly related

It should be noted that correlation is a measure of the strength of a linear relationship between
two variables, which is also evident from the above discussion. Correlation cannot be used
to assess independence, as there can be situations where the correlation is zero due to the
absence of a linear relationship, even though the variables are nonlinearly dependent. From
the graphical exploration using the division of the plane into four regions, we observe that
the positive and negative contributions to the product (z; — x)(y; — y) may cancel each other
out in the presence of nonlinear dependence, resulting in a correlation close to zero. The
corresponding R codes are given in Listing 0.3 and visual demonstration is given in Figure 22.
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Listing 0.2 R Code: The simulation of the pairs of values are generated using the nonlinear
relationship.

y = x”2 + rnorm(n = length(x))
plot(x,y, pch = 19, col = "grey",
xlim = c(min(x), max(x)), ylim = c(min(y), max(y)))

abline(v = mean(x), col = "magenta", lwd = 2)

abline(h = mean(y), col = "magenta", lwd = 2)

points(mean(x), mean(y), col = "blue", cex = 1.4,
pch = 19)

cor(x,y)

[1] -0.1125325

Listing 0.3 R Code: The simulation of the pairs of values are generated using the nonlinear
relationship.

title(bquote(rho == . (cor(x,y))))
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p=-0.1125325

15

10

Figure 22: The nonlinear relationship between the random variables. The correlation is close
to zero, however, they are non inpdependent as there is a nonlinear relationship
between that Y = X?2.

1 Correlation and Linear Dependence

Therefore, we conclude that correlation measures the linear relationship between two
variables. If two variables are independent, their correlation is zero. However, a zero
correlation does not necessarily imply independence, as a nonlinear relationship between
the variables may still exist.
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Regularization and Real Data Analysis

We start our discussion of today’s lecture with the usual multiple linear regression using the
matrix set up which is given by

Yn><1 = an(p+1)6(p+1)><1 + €nx1s

and the symbols have the standard interpretations.

In addition, we assume that €,,,.; ~ N, (0,,1,0%1,+,,). We have also checked in the class that

E(B) = [ that means the estimator BA an unbiased estimator of 5. To recall that

8= argmaxB(Y - XB)' (Y — XB).

The covariance matrix of B is given by
Cov(f) = o?(X' X)L

The diagonal entries of the above matrix gives us the variance associated with the estimator for
individual component 3, of 3 for j € {0,1,2,...,p}. It is important to note that if the matrix
(X’X) is nearly singular, or ill conditioned, then the determinant | X’X| ~ 0 and the variance

Var(B;) for j € {0,1,...,p} will be large and the estimates will unreliable. By unreliable, I
mean the standard error of the estimators will be extremely large or may be infinity as well.

A natural question arises, in what scenarios such a possibility arise. From the theory of linear
algebra, we know that if one column can be written as a constant multiple of another column,
the determinant of the matrix is zero. It is not only between two columns, if a column can
be written as a linear combination of two or more other columns (with at least one non-zero
coefficient), then also the determinant is zero. In other words, the column space of the matrix
does not have the dimension equal to the number of columns of X. In other words, the columns
are linearly dependent.

Given the above discussion, if we want to avoid such situation where |X’X| ~ 0, we need
to identify which columns of X are responsible for this. While discussing the concept of
correlation, we have emphasized the fact that the correlation is a measure of linear rela-
tionship between random variables. Therefore, the degree of linear dependence between two
columns of X (also called feature by machine learning experts) can be measured by the cor-
relation between two columns of X. However, when one column can be written as a linear
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combination of other columns, that correlation may not be able to capture. Such dependence
can be checked by fitting linear regression of the following form

X; =B+ 8K, 4+ BX + X+ BX, e
for j € {1,2,...,p}. A large r.squared value of the above regression model sz indicates that
X; can be approximately represented as a linear combination of other columns.

Data scientists computes the quantity called, variance inflation factor (VIF) by

VIF, = 7 i =1.2,..p.

1—-R j

If the variance inflation factor is more than 5 or 10 (depending on the problem and also domain
knowledge), an analyst may choose to drop those variables.

Let us consider the Auto dataset from the ISLR2 package in R.

library(ISLR2)
pairs(Auto, col = 'red')
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Figure 1: Pairs plot for the Auto data set with five selected columns.

data = Auto[,c("mpg", "displacement",
"horsepower", "weight",
"acceleration")]
head(data)

mpg displacement horsepower weight acceleration

1 18 307 130 3504 12.0
2 15 350 165 3693 11.5
3 18 318 150 3436 11.0
4 16 304 150 3433 12.0
5 17 302 140 3449 10.5
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6 15 429

pairs(data, col = "red")

198

4341

10.0

1500

3500

mpg

300

100

displacement

horsepower

3500

1500

acceleration |

mpg displacement
-0.8051269
1.0000000
0.8972570
0.9329944
-0.5438005

cor (data)

mpg 1.0000000
displacement -0.8051269
horsepower  -0.7784268
weight -0.8322442

acceleration 0.4233285

horsepower

-0.7784268 -

0.8972570
1.0000000
0.8645377

-0.6891955 -
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library(corrplot)

corrplot(corr = cor(data), method = "number")
| .
Q
. 2
(o) o
Q_ S
£ - 2
mpg 1.00 -0.81 -0.78
displacement | -0.81 1.00 0.90
horsepower -0.78 0.90 1.00
weight |  -0.83 0.93 0.86
acceleration -0.54 -0.69
fit = lm(mpg ~ ., data = data)
summary (fit)
Call:
lm(formula = mpg ~ ., data = data)
Residuals:
Min 1Q Median 3Q Max
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-0.83

0.93

0.86
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acceleration
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—-0.54 - 0.4

r0.2
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-11.378 -2.793 -0.333 2.193 16.256

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.2511397 2.4560447 18.424 < 2e-16 **x*

displacement -0.0060009 0.0067093 -0.894 0.37166
horsepower -0.0436077 0.0165735 -2.631 0.00885 *x*
weight -0.0052805 0.0008109 -6.512 2.3e-10 **x*
acceleration -0.0231480 0.1256012 -0.184 0.85388

Signif. codes: O 'x*x' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' '

Residual standard error: 4.247 on 387 degrees of freedom
Multiple R-squared: 0.707, Adjusted R-squared: 0.704
F-statistic: 233.4 on 4 and 387 DF, p-value: < 2.2e-16

R2 = summary(fit)$r.squared

fit_1 = Ilm(displacement ~ horsepower + weight + acceleration,
data = data)

R2_displacement = summary(fit_1)$r.squared

fit_2 = lm(horsepower ~ displacement + weight + acceleration,
data = data)

R2_horsepower = summary(fit_2)$r.squared

fit_3 = lm(weight ~ displacement + horsepower + acceleration,
data = data)

R2_weight = summary(fit_3)3$r.squared

fit_4 = Im(acceleration ~ displacement + horsepower + weight,

data = data)
R2_acceleration = summary(fit_4)$r.squared

print (R2)

[1] 0.7069812

print (R2_displacement)

[1] 0.9064277
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print (R2_horsepower)

[1] 0.8866601

print (R2_weight)

[1] 0.9027659

print (R2_acceleration)

[1] 0.6158656

vif_displacement = 1/(1-R2_displacement)
vif_horsepower = 1/(1-R2_horsepower)
vif_weight = 1/(1- R2_weight)
vif_acceleration = 1/(1-R2_acceleration)

print (c(vif_displacement,
vif_horsepower,
vif_weight,
vif_acceleration))

[1] 10.686922 8.823022 10.284456 2.603255

Verification with existing packages in R

library(car)

Loading required package: carData

vif (£it)
displacement  horsepower weight acceleration
10.686922 8.823022 10.284456 2.603255

Optimal choice of lambda
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lambda = 0.01
X = cbind(rep(1,nrow(data)), as.matrix(datal,2:5]))
head (X)

displacement horsepower weight acceleration

11 307 130 3504 12.0
21 350 165 3693 11.5
31 318 150 3436 11.0
41 304 150 3433 12.0
51 302 140 3449 10.5
61 429 198 4341 10.0

Y = data$mpg

Y_hat = numeric(length = nrow(data))

for(i in 1:nrow(data)){
new X = X[-i, ]
beta_lambda = solve(t(new_X)/*%new_X + lambda*diag(ncol(X)))%*%t (new_X)7%*%Y[-1i]
Y_hat[i] = X[i, 1%*%beta_lambda

}

error = Y - Y_hat
pred_error = mean(error~2)

Repeat above for differnt lambda values

lambda_vals = seq(0.0001, 0.1, by = 0.001)
pred_error = numeric(length = length(lambda_vals))
for(j in 1:length(lambda_vals)){
lambda = lambda_vals[j]
Y_hat = numeric(length = nrow(data))
for(i in 1:nrow(data)){
new X = X[-i, ]
beta_lambda = solve(t(new_X)’*/new_X + lambda*diag(ncol(X)))%*%t (new_X)%*x%Y[-1i]
Y hat[i] = X[i, ]%#*Y%beta_lambda
}

error = Y - Y_hat
pred_error[j] = mean(error~2)
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plot(lambda_vals, pred_error, col = "red", pch = 19,
cex = 1.2, xlab = expression(lambda),
ylab = expression(E(Y-widehat(Y))~2), type = "1",
lwd = 2)

which.min(pred_error)

[1] 20

lambda_star = lambda_vals[which.min(pred_error)]

points(lambda_star,pred_error[which.min(pred_error)],
pch = 19, col = "blue",
cex = 1.3)

text(0.02, 18.348, bquote(lambda == .(lambda_star)),
cex = 1.4, col = "blue", pch = 19, bty = "n")

- A=0.0191

18.346
I

E(Y-Y)*
|

18.340
I

I ] I I I
0.00 0.02 0.04 0.06 0.08

A

I
0.10

In the above analysis, it is clear that the computation associated with the approximation of
the prediction error is heavy. The number of rows in the data set is 392, therefore, 392 many
times, model training has been carried out. The advantage of the above method is basically is
that every row of the data set has been used for both model training as well as model testing
purpose. The number of model fitting exercises may be reduced by dividing the data into k

many segments of approximately equal size.

nrow(data)

[1] 392
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[1]
[16]
[31]
[46]
[61]
[76]
[91]

[106]
[121]
[136]
[151]
[166]
[181]
[196]
[211]
[226]
[241]
[256]
[271]
[286]
[301]
[316]
[331]
[346]
[361]
[376]
[391]

18.
22.
28.
22.
21.
18.
13.
12.
15.
13.
19.
29.
28.
29.
16.
19.
21.
19.
23.
16.
34.
34.
32.
34.
20.
36.
28.

head (X)
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data$mpg
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k = 10 # number of folds
floor (nrow(data)/k)

[1] 39

fold = sample(rep(1l:k, nrow(data)),
size = nrow(data), replace = FALSE)
fold

[1] 7 61010 5 5 5 710 6 4 7 2 9 5 2 5 310 5 8 3 8 5 2
[26] 310 5 9 6 8 9 2 1 6 610 9 1 6 5 6 7 2 4 5 7 5 8 1
[61] 3 6 3 8 8 3 1 5 5 7 2 4 6 3 9 2 5 1 4 7 710 6 5 4
[f6] 8 1 1 9 6 110 1 8 3 9 3 9 1 710 4 110 8 1 610 8 8

[101] 9 410 9 7 9 1 6 4 7 3 5 610 3 8 4 3 8 7 9 6 9 6 9
[126] 10 610 9 41010 2 1 5 4 6 7 1 41010 9 5 4 7 7 410 7
[1561] 6 3 1 6 2 5 2 1 4 6 9 9 9 5 410 5 7 8 610 5 3 1 7
[176] 8 1 6 8 9 6 410 210 3 8 1 9 1 3 8 4 9 2 3 4 3 3
[201] 610 9 2 5 1 5 3 1 810 6 6 7 1 4 3 9 6 7 4 210 6 4
[226] 4 910 2 910 4 810 410 6 2 6 1 7 9 910 9 6 8 5 4 4
[2561] 4 8 1 7 6 910 2 9 6 4 8 4 5 8 41010 7 1 3 9 9 210
[276] 2 9 710 7 6 8 9 2 5 1 2 6 5 7 3 5 8 8 7 9 1 8 9 3
[301] 1+ 7 6 5 8 2 6 7 1 710 7 4 9 1+ 7 8 5 3 1 1 4 1 810
[326] 4 610 6 5 5 6 6 7 8 510 4 310 5 5 5 4 1 5 6 3 9 5
[351] 4 6 9 7 5 2 1 1 3 2 6 4 7 7 510 4 5 4 3 2 3 9 6
[376] 10 8 6 6 5 8 3 6 8 7 7 1 6 2 7 4 3

table(fold)

fold

1 2 3 4 5 6 7 8 910
39 27 33 41 43 50 39 35 41 44

# implementation of k-fold cross validation
lambda = 0.01
error = numeric(length = k)
for(i in 1:k){
new_Y = Y[(fold != i)]
new X = X[(fold !'= 1i),]
beta_lambda = solve(t(new_X)7%*/new_X + lambda*diag(ncol(new_X)))%*/%t (new_X)%*/new_Y
Y hat = X[fold==i,]%*)beta_lambda
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error[i] = mean((Y[fold == i] - Y _hat)~2)
+

k_fold cv = mean(error)

# Do it for multiple lambda values
lambda_vals = seq(0.001,0.2, by = 0.001)
k_fold_cv = numeric(length = length(lambda_vals))
for(j in 1:length(lambda_vals)){
lambda = lambda_vals[j]
error = numeric(length = k)
for(i in 1:k){
new_Y = Y[(fold != i)]
new_X = X[(fold '= i),]
beta_lambda = solve(t(new_X)%*%new_X + lambda*diag(ncol(new_X)))%x*)t (new_X)%*%new_Y
Y _hat = X[fold==i,]%*)beta_lambda
error[i] = mean((Y[fold == i] - Y_hat)~2)
}

k_fold_cv[j] = mean(error)

plot(lambda_vals, k_fold_cv, col = "red",
type = "1", 1lwd = 2,

main = paste("k = ", k),
xlab = expression(lambda),
ylab = expression(E(Y-widehat(Y))~2))

points(lambda_vals[which.min(k_fold_cv)],
k_fold_cv[which.min(k_fold_cv)],
pch = 19, col = "blue", cex = 1.3)
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# how the model coefficients shrinks as a function of $\lambda$

data = Auto[,c("mpg", "displacement",

"horsepower", "weight",

"acceleration")]
lambda_vals = seq(0, 2, by = 0.5)

Y = data$mpg
X = cbind(rep(1,nrow(data)), as.matrix(datal,-1]))
beta_lambda = matrix(data = NA, ncol = ncol(X),

nrow
for(i in 1:length(lambda_vals)){
lambda = lambda_vals[i]

beta_lambdali,] = solve(t(X)%*/X + lambda*diag(ncol(X)))%*/%t (X)%*%Y

}

matplot (lambda_vals, abs(beta_lambdal,-1]),

type = "1", lwd = 2)
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Nonlinear Regression Models

Introduction

In this tutorial, we shall understand how to fit nonlinear regression models using R for some
give data set. We shall consider only a single input variable age and out variable size.

We shall first simulate the data set artificially with some fixed parameter choices and then
apply nonlinear least squares on the data set. This will help us to understand the accuracy of
the nonlinear least squares method using R.

Simulation of growth data

For demonstration we consider the following nonlinear function
size = a X ageb +e

where a and b are fixed parameter and the error component e has normal distribution with
mean 0 and variance 02. We use the function set.seed() to ensure that the simulation studies
are reproducible. For simulation study, we fixed the parameter values as a = 1, b = 0.4 and
o=0.2.

set.seed(123)
age = seq(1, 10, by = 0.1) # age variable
print (age)

(1] 1
[16] 2
[31] 4
[46] 5.
(611 7
[76] 8
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length(age)

[1] 91
a=1 # true value of a
b=20.4 # true value of b

size = a*age’b
print (head(size))

[1] 1.000000 1.038860 1.075654 1.110650 1.144066 1.176079

plot(age, size, type = "1", lwd = 3, col = "red",
cex.lab = 1.5)

Lo
2
o
2
(«D)]
N
)
Lo
0
o |
- I I I I I
2 4 6 8 10
age

Figure 1: The mean growth profile. The parameters are fixed at a = 1 and b = 0.4. The plot
should be considered as a conditional expectation of the response variable (size)
at different values of age variable. E(size|age) as a function of age. If we fixe age =
4 (say), then expected size is a x 4°.

set.seed(123)
size = a*age”b + rnorm(n = length(age), mean = 0, sd = 0.2)
# print(size)
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plot(age, size, col = "darkgrey",

pch = 19)

lines(age, a*age™b, col = "red", lwd = 3)

data = data.frame(age, size)
head(data)
age size
1 1.0 0.8879049
2 1.1 0.9928246
3 1.2 1.3873954
4 1.3 1.1247520
5 1.4 1.1699239
6 1.5 1.5190920
0
N
Q]
) N
N
7
0
—
e
—

age

Figure 2: The simulated data set. The function set.seed() is set at 123 to ensure that the

simulation study is reproducible. The parameters a =1, b = 0.4 and ¢ = 0.2. The
sample size is n = 91. The true conditional mean value of the response given age is
added in red colour.

To estimate the parameters based using the simulated data, we need to minimize the error
sum of squares which is given by

n

ESS = Z (size; — a x age?)

i=1

2
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with respect to a and b. In the following we try to visualize the ESS as a function of a and b.
n is the sample size or the number of rows in the data set.

ESS = function(a, b){
sum((size - axage”b)"2)

}

a_vals
b_vals

nrow

ncol

seq(0, 2, by = 0.1)
seq(0, 2, by = 0.1)
ESS vals = matrix(data

= NA,

for (i in 1:length(a_vals)) {
for (j in 1:length(b_vals)) {

}
}

length(a_vals),
length(b_vals))

# Error sum of squares

ESS_vals[i,j] = ESS(a_vals[i], b_vals[jl)

cat ("The matrix containing the error sum of squares values:\n")

The matrix containing the error

head (ESS_vals)

[1,]
[2,]
(3,]
(4,]
(5,]
(6,]

[1,]
[2,]
(3,]
[4,]
(5,]
(6,]

»]
[2,1]
(3,]

[,1]

356.1787 356.
322.056569 315.
289.7532 278.
259.2705 242.
230.6077 210.
203.7650 179.

[,9]

356.17867 356.
225.75846 202.
95.
33.
17.
46.

126.29386
57.78486
20.23147
13.63369

[,16]
356.17867
51.36231
256.555645

[,2]
1787
9142
1504
8873
1248
8629

356.
308.
264.
223.
186.
153.

[,10]

17867 3
98900 1
43884
52818
25702
62537 1
L,

17]

356.17867
59.58839
533.60446

[,3]
1787
5870
4760
8456
6958
0267

sum

356.
299.
248.
201.
160.
123.

[,11]
56.17867
77.29884
66.03201
22.37818

46.

33735

37.90952
[,18]

356.1787

356.

326.

of squares values:

[,4]
1787
8559
4342
9137
2942
5758

L,
17867

356.
289.
229.
176.
131.

92.

12]

149.07140
42.55778
36.63783

131.31154

108.2047

1027.2224

311

57891

L,
356.1787
226.7613

1868.2602

[,5]
1787
4726
7392
9783
1900
3742

356.
119.
32.
96.
310.
674.
19]

356.
277.
208.
149.
100.
61.
[,13]
17867
31759
68725
28764
11877
18063

356
462
3261

[,6]
1787
1620
15562
1585
1718
19561

356.
90.
49.

233.

642.

1277.

[,20]
.1787
.4931
.2594

[,7]

[,8]

356.17867 356.17867
262.63008 245.58264
183.56731 156.09720
118.99036 87.72236
68.89922 40.45811
33.29390 14.30446

[,14]
17867 356.
10601  65.
16634 112.
32965 498.
62595 1222.
04523 2285.
[,21]
356.1787
890.2926
5525.0426

[,15]
17867
24562
69131
51573
71888
30076



[4,] 971.75809 1778.22689 3113.2319 5280.6753 8752.4778 14260.4286
[56,]1 2196.97023 3793.45566 6366.2331 10464.0066 16936.1481 27096.4505
[6,] 3932.19187 6579.29079 10786.2261 17418.2542 27812.2704 44033.1084

dim(ESS_vals)

[1] 21 21

persp(a_vals, b_vals, ESS_vals,

col = "yellow", xlab = "a",
ylab = "b", zlab = "ESS",
theta = 30)

Figure 3: The variation of the error sum of squares as a function of @ and b. We need to choose
the values of the parameters at which the surface is minimum.

nonlinear least squares using R

The function nls is used to perform to obtain the nonlinear least squares estimate of a and b.
To execute the nls function, we need to provide an initial starting point for the parameters.

fit = nls(size ~ a*age”b, data = data,

start = list(a = 0.5, b = 1))
coefficients(fit)

a b
0.9994330 0.4040503
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1 a_hat = coefficients(fit) [1]
2 b_hat coefficients(fit) [2]

4+ print(a_hat)

a
0.999433

1 print(b_hat)

b
0.4040503

Let us now plot the fitted curve to the data

1 class(fit)

[1] "nls"

1 size_hat = fitted.values(fit) # store predicted values
2 error_hat = residuals(fit)

4+ plot(age, size, pch = 19, col = "darkgrey")

5 lines(age, size_hat,
6 col = "blue", 1lwd = 3, 1ty = 10)
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Figure 4: The fitted allometric growth equation using the nls routine in R.

Some diagnostics

par(mfrow = c(1,2))
hist(error_hat, probability = TRUE,
xlab = expression(widehat(e)),

cex.lab = 1.5, main =" ")
plot(age, error_hat, pch = 19,
col = "red",

ylab = expression(widehat(e)))
abline( h = 0, col = "blue",
lwd = 3, 1ty = 2)
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Figure 5: The behaviour of the residuals play the most critical role in nonlinear regression
models.

Understanding the summary of nls

The summary function allows to understand the uncertainty associated with the estimated
parameters.

summary (fit)

Formula: size ~ a * age™b

Parameters:

Estimate Std. Error t value Pr(>|tl)
a 0.99943 0.03719 26.88 <2e-16 *xx*
b 0.40405 0.02011 20.09 <2e-16 *xx*x

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1795 on 89 degrees of freedom

Number of iterations to convergence: 4
Achieved convergence tolerance: 7.866e-06
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AIC(fit)

[1] -50.38962

BIC(fit)

[1] -42.85704

Understanding the uncertainty of nls estimates

If we want to understand the uncertainty associated with the parameter estimates, we need
to repeat the following process M times (say) and obtain M many estimates of a and b. The
histograms of these estimated values will give us an idea how the estimates will vary if we
repeatedly sample data from the same model population. Let us repeat the above task here
M = 1000 times and obtain the estimates @ and b in each repetition.

M = 1000 # number of repetitions
age = seq(l, 10, by = 0.1) # age variable

a=1 # true value of a
b=0.4 # true value of b
a_hat = numeric(length = M)

b_hat = numeric(length = M)

for (i in 1:M) {
set.seed (i)
size = a*age”b + rnorm(n = length(age), mean = 0, sd = 0.2)
data = data.frame(age, size)
fit = nls(size ~ a*age”b, data = data,
start = list(a = 0.5, b = 1))
a_hat[i] = coefficients(fit) [1]
b_hat[i] = coefficients(fit) [2]

}

par (mfrow = c(1,2))

hist(a_hat, probability = TRUE, xlab = expression(widehat(a)),
main = " ", breaks = 30)

points(a, 0, pch = 19, col = "red", cex = 1.5)

hist(b_hat, probability = TRUE, xlab = expression(widehat (b)),
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24 main = " ", breaks = 30)
25 points(b, 0, pch = 19, col = "red", cex = 1.5)
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Figure 6: The approximate sampling distribution of the nonlinear least squares estimates of a
and b. The sampling distribution is quiet well approxiamted by the normal distribu-
tion. In addition, note that the estimated values are centered about the true values
of a and b using which the articial data sets have been simulated.

Homoschedasticity versus heteroschedasticity

The statistical model to perform the nonlinear regression model is of the following form:
size; = a x ageb +¢;, i € {1,2,...,n}.

In the previous simulations, we have consider that Var(e;) = o2 for all i € {1,2,...,n}, that
means, at different age, the variability in the size variable remains same about the true mean
function. To simulate a scenario, we consider that Var(e) = 0% x age?. It means that as the
age increases, the variability in size also increases.

1 par(mfrow = c(1,2))

2 a=1
3 b=0.4
4+ age = seq(l, 20, by = 0.1)
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size = a*age”b + rnorm(n = length(age), mean = O,
sd = 0.2xsqrt(age))
data = data.frame(age, size)
fit = nls(size ~ a*age”b, data = data,
start = list(a = 0.5, b = 1))
size_hat = fitted.values(fit) # store predicted values

error_hat = residuals(fit)

plot(age, size, pch = 19, col = "darkgrey")
lines(age, size_hat, col = "blue", lwd = 3, lty = 10)
plot(age, error_hat, pch = 19, col = "red",

ylab = expression(widehat(e)))
abline( h = 0, col = "blue", 1lwd = 3, lty = 2)

O — [ )
5 - ‘3
<+ - ."’ °

o 7 4

o ™ — X © ®
N - (o ]
5 = ey
~ 5 g oo '.QQ’

’_/ | .uh... :

— [ )

— —e [Te) .. %

— o0 o

I I I I ! I I I I
5 10 15 20 5 10 15 20

age age

Figure 7: The simulated data gives clear indication of the presence of heteroschedasticity. The
plot of residuals against the age gives whether the errors do not have a constant

variance.

Confidence Interval and Prediction Interval
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age = seq(l, 20, by = 0.1)
size = a*age”b + rnorm(n = length(age), mean = O,
sd = 0.2)
data = data.frame(age, size)
fit = nls(size ~ a*age™b, data = data,
start = list(a = 0.5, b = 1))

The nonlinear least squares estimates of a and b are obtained as

coefficients(fit)

a b
0.981298 0.407464

The estimated variance covariance matrix of a and b is given by

print (vcov(fit))

a b
a 0.0006579434 -0.0002611200
b -0.0002611200 0.0001081991

To obtain the confidence interval at a unseen value of age, say age*, we need to compute the
variance of

- ~ b
size® = a x (age*)

. We observe that size" is a nonlinear function of @ and b and we call it as P (&,i)) and we
need to compute the variance of this quantity.

To approximate the variance of v (&,B), we consider the first order Taylor’s approximation
about the true values of a and b as given below (neglecting the higher order terms):

¥ (ab) =¢<a,b)+<a—a>%+(g_b)%@g

Taking expectation on both sides, we obtain

E (¢ (a,0)) ~ ¥(a,b)
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and approximate variance of ¢ (&,B) can obtained as

B (v (a,) - ab) ~ E[(d—a)?j—i—@—b) gﬂ (0.1)
= Var(a)(,)? + Var(d)(y)? +2 x Cov(a, byt (0.2)
B Var(@) Cov(a,b)| [,
N [wa wb] Cov(&,?)) Var(?)) ] [@Z)J (0.3)

In the following code, we compute the variance of Var (¢ (&, Z)) ) The estimate of the variance
Var (7,/) (&,i))) is obtained by evaluating g—f and % at @ and b.

a_hat = coefficients(fit) [1]

b_hat = coefficients(fit) [1]
psi_a = age b_hat
psi_b = a_hat*age b_hat*log(age)

size_var = numeric(length = length(age))
for(i in 1:length(age)){

size_var[i] = (psi_alil]) "2xvcov(fit) [1,1] + (psi_b[i]) 2*vcov(fit)[2,2] + 2*psi_alil*psi_b
}

We now construct an approximate 95% confidence interval which is given by
(si/z\e —1.96 x \/Var(size), size + 1.96 X \/@(ﬁ)) .

In the construction of the confidence interval the irreducible error did not contribute anything.
To compute the prediction interval, we need to consider the variation in the prediction due to
sampling variation in the estimate of the parameters and also the random error component.
Therefore, the variance of the size is given by

Var (51/z\e) =Var (w (&,i))) + Var(é) =Var (w (&,B)) + o2

Therefore the approximately 95% prediction interval is given by

<£z\e T 1.96 x \/Vc} (¢ (a.5)) +;5)

par (mfrow = c(1,2))
plot(age, size, pch = 19, col = "darkgrey", cex.lab = 1.5,

main = "Confidence Interval")
lines(age, fitted.values(fit)+1.96*sqrt(size_var), col = "blue", lwd = 2,
1ty = 2)
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lines(age, fitted.values(fit)-1.96*sqrt(size_var), col =

lty = 2)

plot(age, size, pch = 19, col = "darkgrey", cex.lab =
main = "Prediction Interval")

for(i in 1:length(age)){

size_var[i] = (psi_al[il) " 2*vcov(fit) [1,1] + (psi_b[i]) "2*vcov(fit)[2,2] + 2xpsi_alil*psi_b

"blue", 1lwd = 2,

1.8,

}
lines(age, fitted.values(fit)+1.96%sqrt(size_var), col = "red", lwd = 2,
1ty = 2)
lines(age, fitted.values(fit)-1.96%sqrt(size_var), col = "red", lwd = 2,
1ty = 2)
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Figure 8: The demonstration of the confidence interval and prediction interval in the context
of nonlinear regression model. It can be observed that the prediction interval is
wider than the confidence interval. The prediction interval takes the variance of the
error component also in account, where the confidence interval considers only the
uncertainty associated with the estimated parameters.
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Taylor’s approximation for one variable

In computing the confidence and prediction interval, we have chosen the normal distribution.
It is important to check how accurate these approximations are. To understand this concept,
we consider a simple example. Suppose that X;, X,,...,X,, be a random sample from the
Exponential distribution with rate parameter A\. We are interested to estimate the parameter
A. We know the following from the Central Limit Theorem that for large n

— 1 1
X ~N|[—- —].
" ()\’)\271)

By the method of moment, we see that the Method of Moment Estimator for A is
1 __

X, =v(X,) (say).

By the first order Taylor’s approximation of (X7n) about %, we obtain

so=e(3)+ (-1 ()

Now taking expectation on both sides

L
XTL

_— 1
E[¢(X,)] ~ ¢ (X) Y
For computing the variance, we see that

et~ (5 1) ()] v e,

provided 9’ (%) #+ 0. Therefore, the approximately Var (%) > )‘?2 Let us verify the same

using computer simulation. In addition, we overlay a normal density function with mean A

and variance )‘72 on the histograms for different values of n. The histograms are simulated

using 1000 replications.

par (mfrow = c(2,3))

lambda = 3
n_vals = c(3,5, 10, 25, 50,100)
rep = 1000

for(n in n_vals){
psi_xbar = numeric(length = rep)
for(i in 1:rep){
x = rexp(n = n, rate = lambda)
psi_xbar[i] = 1/mean(x)

¥

psi_xbar
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var (psi_xbar)
lambda~2/n
hist(psi_xbar, probability = TRUE, main = paste('n = ", n),
xlab = expression(psi(bar(X[n]))))
curve(dnorm(x, mean = lambda, sd = sqrt(lambda~2/n)),
add = TRUE, col = "red", lwd = 2)

}
n=3 n=>5 n= 10
z 9 > 8| > o
a oS o o o o
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Figure 9: As the sample size increases, the sampling distribution of the function of the sample
mean is well approximated by a normal distribution. This approximation is known
as the Delta method. The histograms are obtained by repeatedly sampling 1000
times from the exponential distribution with rate parameter A = 3.

Bootstrapping regression model

In the following code, we investigate how we can compute the standard of the estimate using
the nonparametric bootstrap procedure.

a=1

b=20.4

age = seq(1, 20, by = 0.1)
set.seed(123)
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size = a*age™b + rnorm(n = length(age), mean = O,

sd = 0.2)
plot(age, size, pch = 19, col = "darkgrey", cex.lab = 1.5)
data = data.frame(age, size)

B = 1000 # number of bootstrap data set
a_hat = numeric(length = B)
b_hat = numeric(length = B)
for (i in 1:B) {
ind = sample(l:nrow(data), replace = TRUE)
boot _data = datal[ind, ]

19

20

21

22

23

boot_fit = nls(size ~ a*age~D,
data = boot_data,
= list(a =1, b = 1))
a_hat[i] = coefficients(boot fit) [1]
b_hat[i] = coefficients(boot_fit) [2]
}
mean (a_hat) # bootstrap mean

[1] 1.008809

sd(a_hat) # bootstrap standard error or a_hat

[1] 0.02566318

mean (b_hat)

[1] 0.3965658

sd(b_hat)

[1] 0.01025991
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Figure 10: We fixed the set.seed(123) and simulate the data sets from the population nonlinear
regression model. The parameters are fixed as a = 1 and b = 0.4 and the errors are
assumed to be normally distributed. This data set will be resampled to obtain the
bootrstrap estimate of the parmaeters and also compute the bootstrap standard
error of the estimates.

“knmvﬂwdﬁe&e%nmhgdmmmmmnd&amﬂﬂmwdmrB:IMMbmﬁ%mpme%.

par (mfrow = c(1,2))
hist(a_hat, probability = TRUE,
main = "B = 1000",
xlab = expression(widehat(a)))
cat("95% bootstrap CI for a based on normal distribution is given as \n")

95% bootstrap CI for a based on normal distribution is given as

c(mean(a_hat) - 1.96*sd(a_hat), mean(a_hat) + 1.96*sd(a_hat))

[1] 0.958509 1.059109

cat ("nonparametric 95% CI for a is \n")

nonparametric 95% CI for a is
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quantile(a_hat, c(2.5, 97.5)/100)

2.5% 97.5%
0.958737 1.061958

hist(b_hat, probability = TRUE,
main = "B = 1000",
xlab = expression(widehat(b)))
cat ("95Y, bootstrap CI for b based on normal distribution is given as \n")

95% bootstrap CI for b based on normal distribution is given as

c(mean(a_hat) - 1.96*sd(a_hat), mean(a_hat) + 1.96+*sd(a_hat))

[1] 0.958509 1.059109

cat ("nonparametric 95% CI for b is \n")

nonparametric 95% CI for b is

quantile(b_hat, c(2.5, 97.5)/100)

2.5% 97.5%
0.3761927 0.4169939
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Figure 11: The bootstrap sampling distribution of a and b based on 1000 bootstrap samples.
It may be noted that the bootstarp estimates are centered about the nls estimates
of the parmaeters a and b based on the complete data sets, not centered around
the true values of a and b using which the data has been simulated.

Case study using synthetic data generation

Suppose that we have the population regression function f(z|b) parameterized by b = (b, b;)’
and the statistical model for the data is given by
box
by +x

yz:f(w‘b)—i_ez: +6i7i€{1727'--7n}'

We assume that the errors ¢;s are normally distributed with mean 0 and variance o2 and
they are also independent. Statisticians formally call it as IID (Independent and Identically
Distributed). In following code, we first simulate the synthetic data by fixing the population
parameters by, by, o2

par (mfrow = c(1,3))

# Plot the mean function
set.seed(1234)

b0 = 1

bl = 0.5
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f = function(x){

b0*x/ (bl+x)
}
curve(f(x), col = "red", 0, 2.5, lwd = 2)
sigma2 = 0.01 # variance
x = seq(0, 2, by = 0.1)
print(x)
(1] 0.0 0.1 0.2 0.3 0.4 0.50.6 0.7 0.80.91.01.11.21.31.41.51.61.71.8
[20] 1.9 2.0
n = length(x) # length of the data
y = bO*x/(bl+x) + rnorm(n = n, mean = 0, sd = sqrt(sigma2))
print (y)
[1] -0.1207066 0.1944096 0.3941584 0.1404302 0.4873569 0.5506056
[7] 0.4879805 0.5286701 0.5589394 0.5538534 0.6189474 0.5876614

[13] 0.6282570 0.7286681 0.8327915
[19] 0.6988915 1.0332502 0.8134088

o

.7389715 0.7108038 0.6816077

plot(x, y, col = "grey", pch = 19, cex = 1.2)
data = matrix(data = NA, nrow = 5, ncol = length(x))
for(i in 1:nrow(data)){
datali,] = bO*x/(bl+x) + rnorm(n = n, mean = 0, sd = sqrt(sigma2))
}
matplot(x, t(data), col = 1:10, pch = 19, ylab = "y")
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Figure 12: The left most panel is the mean population regression function and the right panel
contains the simulated data using the seed value 1234. The seed value is used ensure
the reproducibility of the plots. For simulation, the parameter choices are set as
by = 1,b; = 0.5,02 = 0.01. In the right most panel some more simulation has been
carried to demonstrate the randomness across different simulated data sets.

We consider the minimization of the error sum of squares as the first approach to estimate the
parameters. We minimize the following function with respect to b, and b;.

2
= box;
ESS(b) =) (yi — 610”) .

i—1
We first plot the surface of the ESS(b) with different choices of b, and b,. For the user, show
the plots using the persp() function and also by using plot3D package.

fun ESS = function(b){

b0 = b[1]

bl = b[2]

sum((y - bO*x/(bl+x))~2)
}
b0_vals = seq(0.01,2, by = 0.05)
bl_vals = seq(0.01,2, by = 0.05)

ESS_vals = matrix(data = NA, nrow = length(bO_vals),
ncol = length(bl_vals))
print (head (ESS_vals))

(.11 [,2]1 [,3] [,4] L,8] C,e] C,7]1 [,8] [,9] [,101 [,11] [,12] [,13] [,14]
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[1,]
[2,]
(3,]
(4,]
(5,]
(6,]

[1,]
[2,]
(3,]
[4,]
(5,]
(6,1

[1,]
[2,]
(3,]
[4,]
(5,]
(6,]

[1,]
[2,]
(3,]
(4,]
(5,]
(6,]

NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
[,15] [,16]
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
[,27] [,28]
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
[,39] [,40]
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA

NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
[,171 [,18] [,19]
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
[,29] [,30] [,31]
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA
NA NA NA

for(i in 1:length(b0_vals)){
for(j in 1:length(bl_vals)){
ESS_vals[i,j] = fun_ESS( c(bO_vals[i],

+
}

print (head (ESS_vals))

3

b

W wd oo N

[,1]

.751635
.636982
.618948
.697534
.872741
.144567

W b oo N

L,
. 764175
.704601
. 728946
.837211
.029396
.305502

2]

(,3]

. 774684
. 762262
.824768
.962204
.174570
.461865

W s 0000 O N

NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
[,20] [,21]
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
[,32] [,33]
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA

(,4]

. 783834
.812939
.909939
.074834
.307624
.608309
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W dd oo o N

bl_vals[jl) )

L,

NA
NA
NA
NA
NA
NA

[,22]

NA
NA
NA
NA
NA
NA

[,34]

5]

.791970
.858289
.986727
.177284
.429960
. 744755

NA
NA
NA
NA
NA
NA

W dd oo O N

NA
NA
NA
NA
NA
NA

[,23]

NA
NA
NA
NA
NA
NA

[,35]

L,
.799305
.899368
.056670
.271210
.542989
.872006

NA
NA
NA
NA
NA
NA

6]

NA
NA
NA
NA
NA
NA
L,

L,

W s 0o O N

24]
NA
NA
NA
NA
NA
NA

36]
NA
NA
NA
NA
NA
NA

L,
.805982
.936911
.120874
.357872
.647903
.990969

NA
NA
NA
NA
NA
NA

[,25]

NA
NA
NA
NA
NA
NA

[,37]

7]

NA
NA
NA
NA
NA
NA

b 0o O N

NA
NA
NA
NA
NA
NA

[,26]

NA
NA
NA
NA
NA
NA

[,38]

L,
.812108
.971460
.180175
.438250
. 745687
.102485

NA
NA
NA
NA
NA
NA

8]

NA
NA
NA
NA
NA
NA



[1,]
[2,]
(3,]
[4,]
(5,]
(6,]

[1,]
[2,]
(3,]
(4,]
(5,]
(6,]

3

b

(1,]
[2,]
(3,]
(4,]
(5,]
(6,]

g oo NN S oo o NN NQENNENC I RN RN

(G20 TNe) @) BN N

[,9]
.817761
.003432
.235221
.513127
.837152
.207294

[,17]
.8515621
.195926
.569673
.972762
.405192
.866964

[,25]
.873379
.321840
.790919
.280615
.790928
.321860

[,33]
.888913
.411896
.950246
.503965
.073052
.657507

[,10]
.823003
.033155
.286534
.583142
.922978
.306042

[,18]
.854738
.214397
.602014
.017588
.461119
.932607

[,26]
.875598
.334680
.8135681
.312302
.830843
.369203

[,34]
.8905649
.421409
.967129
.527710
.103150
.693451

g oo NN S oo o NN S oo N N

(G20 BNe) 0> BN N

par (mfrow = c(1,2))
persp(b0_vals, bl_vals, ESS_vals,

theta =

zlab = "ESS",

30, xlab

col

[,11]
.827886
.060896
.334541
.648822
.003738
.399291

[,19]
.857794
.231966
.632812
.060333
.514527
.995396

[,27]
877729
.347012
.836364
. 342785
.869275
.414834

[,35]
.892130
.430603
.983455
.550683
.132290
. 728274

g oo o NN 01O O NN S 0o O NN

g o0 O NN

= "bO",
= "grey

# beautiful surface plot
library(plot3D)
persp3D(b0_vals, bl_vals, ESS_vals)

[,12]
.832450
.086875
.379595
.710611
.079923
.487531

[,20]
.860702
.248701
.662183
.101147
.565594
.05565624

[,28]
.879775
.358866
.8566318
.372133
.906309
.458847

[,361]
.893658
.439494
.999250
.572924
.160518
.762030

S o1 oo NN
S 01 o1 O NN

g o1 o O NN o1 o O NN
g o1 o O NN

oo o O NN

g o 0 O NN
g o O N NN

ylab = "b1",
||)
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[,13]

.836729
.111276
.421996
. 768888
.151953
.571190

[,21]

.863474
.264665
.690230
.140168
.614480
.113166

[,29]

.881743
.370271
.876494
.400412
.942024
.501331

[,37]

.895135
.448097
.014542
.594468
.187877
. 794768

g oo o NN g o1 o o NN S O o1 O NN

oo o0 N NN

[,14]

.840753
.134257
.461998
.823977
.220193
.650647

[,22]

.866119
.279913
. 717047
.177519
.661331
.168482

[,30]

.883636
.381254
.8956935
.427681
.976491
.542366

[,38]

.896565
.456426
.029354
.615348
.214408
.826535

g o 0 OO NN g oo O NN > 0o O NN

g o 0N NN

[,15]

.844546
.1559561
.499822
.876160
. 284965
. 726236

[,23]

. 868646
.294496
.742717
.213311
. 706277
.221616

[,31]

.885460
.391838
.914683
.453997
.009778
.582028

[,39]

.897949
.464495
.043710
.635595
.240150
.857374

g oo O NN S 0o O NN

g o o OO NN

[,16]

.848129
.176473
.535658
.925683
.346548
. 798253

[,24]

.871063
.308457
.767318
.247646
. 749440
.272701

[,32]

.887218
.402045
.932775
.479409
.041946
.620386

[,40]

.899291
.472315
.067631
.655239
.265137
.887327
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Figure 13: The left panel shows the surface plto using the persp function and the right panel
shows the surface with color gradient.

In the following code, we use the function optim() to minimize the error sum squares function
with respect to b, and b;.

out = optim(c(1.5, 1), fn = fun_ESS) # minimize the function
summary (out)

Length Class Mode

par 2 -none- numeric

value 1 -none- numeric

counts 2 -none- numeric

convergence 1 -none- numeric

message 0 -none— NULL

b_hat = out$par # extract the estimates

print (b_hat)

[1] 1.0820661 0.6865781

In the following, we obtain the estimates of the parameter by using the method of maximum
likelihood. The likelihood function is given by

n n 1 1 boz; 2
£(0) = 125, bg, by, 0%) = (vi—n)
( ) Ef(yz‘xw 0,91,0 ) 1];[10'\/%
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which simplifies to

n/2 n i \2
£<b0ab1702):< : ) e_ﬁziﬂ(yi_bbloﬂl‘).

o221

We write down the log-likelihood function as

n 2
n n by,
(b, 0%) =~ log(o) — Flon(zm) = 3 (= %)
1=1 7

Instead of maximizing the log-likelihood function, we can minimize the negative log-likelihood
function —I(by, by, 02).

# Maximum Likelihood Estimation
n = length(x)
fun_loglik = function(b){

b0 = b[1]

bl = b[2]

sigma2 = b[3]

-(n/2)*log(sigma2)-(n/2)*1log(2*pi) - (1/(2*sigma2))*sum((y-bO*x/(bl+x))~2)

}

fun_neglogLik = function(b){
b0 = b[1]
bl = b[2]

sigma2 = b[3]

(n/2)*log(sigma2) + (n/2)*log(2*pi) + (1/(2*sigma2))*sum((y-bOx*x/(bl+x))"2)
}
out = optim(par = c(1,1,0.1), fn = fun_neglogLik)
out$par

[1] 1.081961018 0.686410056 0.009225206

The estimate that we have obtained by employing the method of maximum likelihood is subject
to uncertainty due to the random nature of the data set. Therefore, we need to report the
uncertainty or the standard error of the estimate. We omit the following result without proof
which states that for large sample size the variance covariance matrix of l/)g, l/); and o2 is well
approximated by the inverse of the Hessian matrix evaluated at the MLE with a negative
sign.
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In the optim function, we can use the argument hessian = TRUE to obtain the estimated
Hessian matrix at the MLE. In the

out = optim(par = c(1,1,0.1), fn = fun_negloglik,
hessian = TRUE)
out$par

[1] 1.081961018 0.686410056 0.009225206

out$hessian

[,1] [,2] [,3]
[1,] 721.5627924 -414.1891424 -1.328736e-01
[2,] -414.1891424 256.2930941 1.680828e-01
[3,] -0.1328736 0.1680828 1.325758e+05

H = out$hessian
cat("The Hessian matrix evaluate at the MLE is given by \n")

The Hessian matrix evaluate at the MLE is given by

print (H)

[,1] [,2] [,3]
[1,] 721.5627924 -414.1891424 -1.328736e-01
[2,] -414.1891424 256.2930941 1.680828e-01
[3,] -0.1328736 0.1680828 1.325758e+05

cat("The inverse of the Hessian matrix with negative sign is given by \n")

The inverse of the Hessian matrix with negative sign is given by
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solve (H)

[,1] [,2] [,3]
[1,] 1.915649e-02 3.095835e-02 -2.005022e-08
[2,] 3.095835e-02 5.393283e-02 -3.734945e-08
[3,] -2.005022e-08 -3.734945e-08 7.542853e-06

Therefore, the square root of the diagonal entries of the matrix (—H)~! will give the standard
error of the MLE. A natural question arises how good these approximations are? To see this,

we can visualize the sampling distribution of

SE(by)

and

by — by

~ SE()

by computer simulation based on 1000 replications.

1

rep = 1000
w_0 = w_1 = numeric(length = rep)
for(i in 1:rep)d{
x = seq(0, 2, by = 0.05)
n = length(x) # length of the data

y = b0*x/(bl+x) + rnorm(n = n, mean = 0, sd = sqrt(sigma2))

out = optim(par = c(1,1,0.1), fn = fun_neglogLik,
hessian = TRUE)
H = out$hessian

w_0[i] = (out$par[1] - bO)/sqrt(solve(out$hessian) [1,1])
w_1[i] = (out$par[2] - bl)/sqrt(solve(out$hessian) [2,2])

}

par(mfrow = c(1,2))

hist(w_0, probability = TRUE, xlab = expression(W[0]),
main = paste("n = ", n), breaks = 30)

curve (dnorm(x), add = TRUE, col = "red", lwd = 2)

hist(w_1, probability = TRUE, xlab = expression(W[1]),
main = paste("n = ", n), breaks = 30)

curve (dnorm(x), add = TRUE, col = "red", lwd = 2)
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Figure 14: The sampling distribution of the estimator centered at the true value and scaled
by the estimated standard error. An approximation with the standard normal
distribution is shown for reference.

The simulations suggest that for large sample size n,
by — b
Wy = —=——=2 ~ N(0,1),
SE(bo)

I;B ~N <b07§E (55)2> )

for large sample size n. Therefore, large n, (1 — )% confidence interval for b, can be obtained

there for

as
(bO - ZQ/ZSEa)O)v bO + Za/2SE<bO)> )

where P(Z > z,,,) = § and Z ~ N(0,1).

1 Classroom Quiz: Simulation

Perform the simulation study with the regression function

bor?

where by, b; > 0 and study the sampling distributions of the MLEs.
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Case Study: Local maximization

In the classroom, I have randomly asked Shailaja to suggest a nonlinear function which will
be used as the systematic component of the nonlinear regression model to simulate the data.
She suggested the following function

f(x) = sin(az) + bz?, z € [0, 2],

Therefore, the statistical modelling framework is given by

y; = flz;) + e, i€{1,2,...,n}

where €, ~ N (0,0?). We simulate the data from the above regression model and estimate the
model parameters a, b, 02 using the method of maximum likelihood.

In the first step, we simulate a sample of size n by fixing the parameters a = 3,b = 1 and
0% =0.05. We use 0 = (a,b,0?) to denote the parameter vector.

# The mean regression function

a=3
b=1
f = function(x){
sin(a*x) + b*x~2
}
n = 30
sigma2 = 0.1
x = seq(0, 2, length.out =
y = numeric(length = n)

for(i in 1:n){
y[i] = rnorm(n = 1, mean

}

print(y)

[1]
(7]
[13]
[19]
[25]

0.10143029 0.02054028
1.23641594 0.90970110
1.56414402 1.05069019
1.44679588 0.82460828
2.08452032 1.94083023

f(x[il),

.17456038
.57312055
.20524024
.66001008
.48565244

# population nonlinear regression function

# sample size
# population standard deviation

# sequence of x values
#

sd = sqrt(sigma2))

0.79865840 0.76382977 1.13188772
1.63766518 1.19998373 0.93721434
1.62027205 0.56408903 1.27803134
1.34018311 0.52078554 1.95107356
2.30070775 3.06211908 3.48298509
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plot(x,y, col = "darkgrey", pch = 19, cex = 1.2)
curve(f(x), add = TRUE, col = "red", lwd = 2)

2.0 3.0

1.0

0.0

I I I I I
0.0 0.5 1.0 1.5 2.0

X

Figure 15: The simulated data set and the population regression mean function is overlaid for
reference.

In the following R codes, we minimize the negative of the log-likelihood function. The reader
is encouraged to write down the expression of the likelihood function explicitly and plot the
surface of the likelihood function for different choices of a and b.

fun_negloglLik = function(theta){
a = thetal1]
b = thetal[2]
sigma2 = thetal[3]

(n/2)*log(sigma2) + (n/2)*log(2*pi) + (1/(2*sigma2))*sum((y - sin(a*x) - b*x~2)72)

out = optim(par = c(2.8,0.9,0.04), fn = fun_neglogLik,
hessian = TRUE)

a_hat = out$par[1]

b_hat = out$par[2]

sigma2_hat = out$par[3]

The maximum likelihood estimates of the parameters are given below. In addition, we add both
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the population nonlinear regression function and the estimated (sample) nonlinear regression
function for reference. The estimated regression function is given by

f(z) = sin(az) + bx?.

print(a_hat)

[1] 2.878296

print(b_hat)

[1] 0.9969667

print (sigma2_hat)

[1] 0.09904459

plot(x,y, col = "darkgrey", pch = 19, cex = 1.2)

curve(f(x), add = TRUE, col = "red", lwd = 2)

curve(sin(a_hat*x) + b_hat*x~2, add = TRUE,
col = "blue", lwd = 2)

legend ("topleft", legend = c("f(x)", expression(widehat(f) (x))),
col = c("red", "blue"), lwd = c(2,2), bty = "n")

® | f(x)
e _
- [qV}
o
—
o _|
o

I I I I I
0.0 0.5 1.0 1.5 2.0

X

Figure 16: The estimated regression function and the population regression function is shown
using different colour and they are in good agreement.
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Certainly, the above estimates are subject to uncertainty. Basically, if we simulate another
set of data set and compute the MLE, certainly, these estimates are going to differ. However,
we want to get an idea, how much they can differ! To obtain the Hessian matrix (H) will be
useful. The estimate of the variance of the MLE of a is given by H', evaluated at 6.

H = out$hessian
print (H)

[,1] [,2] [,3]
[1,] 166.11774761  53.77109274 -0.04929243
[2,] 53.77109274 1019.58001971  -0.09748603
[3,] -0.04929243 -0.09748603 1529.70159162

solve (H)

[,1] [,2] [,3]
[1,] 6.124376e-03 -3.229902e-04 1.767654e-07
[2,] -3.229902e-04 9.978300e-04 5.318261e-08
[3,] 1.767654e-07 5.318261e-08 6.537223e-04

To understand the uncertainty associated with these estimates, first we simulate the sampling
distribution of 6 by repeating the simulation experiment M times. We simulate the sampling
distribution of a, b and 2.

We also compute the following three quantities:

i — b—b —2)o2
Wa:?'\fl7 Wy = ==, szz:(n 2>U
SE(a) SE(b) o
M = 1000
a_hat = numeric(length = M)
b_hat = numeric(length = M)

sigma2_hat = numeric(length = M)

se_a_hat = numeric(length = M)
se_b_hat M)
se_sigma2_hat = numeric(length = M)

numeric(length

for (j in 1:M) {
x = seq(0, 2, length.out = n)
y = numeric(length = n)
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for(i in 1:n){
y[i] = rnorm(n = 1, mean = f(x[i]), sd = sqrt(sigma2))
}

out = optim(par = c(2.8,0.9,0.04), fn = fun_neglogLik,
hessian = TRUE)

a_hat[j] = out$par[1]

b_hat[j] = out$par[2]

sigma2_hat[j] = out$par[3]

H = out$hessian

se_a_hat[j] = sqrt(solve(H)[1,1])
se_b_hat[j] = sqrt(solve(H)[2,2])
se_sigma2_hat[j] = sqrt(solve(H) [3,3])

par (mfrow = c(2,3))

hist(a_hat, probability = TRUE, xlab = expression(widehat(a)),
main = paste("'n = ", n))

points(a, O, pch = 19, cex = 1.5, col = "red")

hist(b_hat, probability = TRUE, xlab = expression(widehat (b)),
main = paste("n = ", n))

points(b, 0, pch = 19, cex = 1.5, col = "red")

hist(sigma2_hat, probability = TRUE, xlab = expression(widehat(sigma~2)),

main = paste("n = ", n))
points(sigma2, 0, pch = 19, cex = 1.5, col = "red")

hist((a_hat-a)/se_a_hat, probability = TRUE, xlab = expression(widehat(a)),

main = paste("n = ", n))
curve (dnorm(x), add = TRUE, col = "red", lwd = 2)

hist((b_hat-b)/se_b_hat, probability = TRUE, xlab = expression(widehat(b)),

main = paste("'n = ", n))
curve (dnorm(x), add = TRUE, col = "red", 1lwd = 2)
hist((n-2)*sigma2_hat/sigma2 , probability = TRUE,
xlab = expression(over((n-2)*widehat(sigma~2),sigma~2)),
main = paste("n = ", n), cex.lab = 0.6)
curve(dchisq(x, df = n-2), add = TRUE, col = "red", lwd = 2)
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Figure 17: The top panel represents the simulated sampling distribution of the MLEs based on
M = 1000 replications. The over red dot indicates the true value of the parameters
using which the training data sets have been simulated. It is interesting to see
that, MLEs are centered about the true valye, ensuring unbiasedness of the MLE.
In the lower panel, the simulated distributions of W, W, and W . are drawn. The
standard normal distribution is overlaid on the first two histograms (bottom panel)
and the last figure is overlaid with a x? distribution with (n—2) degrees of freedom.

1 theta_hat = cbind(a_hat, b_hat, sigma2_hat)
2 head(theta_hat)

a_hat b_hat sigma2_hat
[1,] 3.083447 0.9633365 0.08005781
[2,] 2.961624 0.9513831 0.14486206
[3,] 3.089259 1.0196278 0.10457618
[4,] 2.946431 0.9882319 0.11813399
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[5,] 2.905273 0.9494119 0.09364506
[6,]1 2.905965 0.9480337 0.09510966

pairs(theta_hat, col =

"darkgrey", pch = 19, cex

1,2,

labels = c(expression(widehat(a)),
expression(widehat (b)),
expression(widehat (sigma~2))))
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Figure 18: The pairs plot indicates a small negative correlations between a and ?),

these estimators are independent with o2
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Sensitivity to the Initial Conditions

In the following, we visualize the error sum of squares as a function a and b. The surface
clearly demonstrates the existence of multiple local minimum and depending upon the initial
conditions different minimum will be achieved.

fun_ESS = function(a,b){
sum(y - sin(a*x) - b*x72)72

}

a_vals = seq(0,8, by = 0.01)

b_vals = seq(0,2, by = 0.01)

ESS_vals = matrix(data = NA, nrow = length(a_vals),
ncol = length(b_vals))

for(i in 1:length(a_vals)){

for(j in 1:length(b_vals)){

ESS_vals[i,j] = fun_ESS(a_vals[i], b_vals[j])

}
}
library(plot3D)
persp3D(a_vals, b_vals, ESS_vals, xlab = "a", ylab = "b",

zlab = "ESS", theta = 60, phi = 10)

3500

3000

— 2500

— 2000

— 1500

1000

®
‘ 500
e}

Figure 19: The surface of the negative log likelihood function for a specific choice of o2. Here
we plot the error sum of squares, however, one must note that under the normality
assumption, the surface is proportional to the negative log-likelihood function.
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Large Sample Approximations

More ideas on consistent estimator

We say that a sequence of estimators W, is a consistent estimator for § € © if for every € > 0,
and for every 0 € O, the following holds

lim P, (|W,, — 0] <€) = 1.

n—,oo
The statement can also be equivalently written as lim,_, . P, (|WW,, — 6| > €¢) = 0 and by the
Chebychev’s inequality, we have

E,(\W,, — )"

]‘:)9(|I/Vn_0|26>S 2

€

Therefore, a sufficient condition for an estimator W,, to be consistent estimator for 6 is to test
whether Ey(W,, — )% — 0 as n — oo for every 0 € ©.

In addition, we have the following well known decomposition, given by
Ey(W, — 0)2 = Vary(W,) + (Bias,W,,)".

Therefore, we have the following theorem:

! Characterization of consistent estimator [@casella2002statisticall
If W, is a sequence of estimators of a parameter  satisfying the following conditions:

Vary(W,,)

e lim =0
Biasy(W,,) =0

e lim

n—o0

n—o0

for every 6 € ©, then W, is a sequence of consistent estimators of 6.

It is important to note that the sequence of estimators must have finite variance which is not
a necessary condition to be consistent. One can construct a different sequence of consistent
estimators as well by virtue of the following theorem:

345



10

11

12

13

I Many consistent estimators

If W, is a consistent sequence of estimators of a parameter 6. Let (a,) and (b,) are

sequence of real numbers satisfying lim, ,. a, = 1 and lim, , b, = 0. Then the

sequence U, = a,, W, + b, is a consistent sequence of estimators of 6.

The proof is simple and reader is encouraged to show this. Compute VaryU, and Bias,U,,
and show that these quantities converges to 0 as n — oo.

Examples of consistent estimator using R

Using the software R, we can demonstrate that
P (X, —8l<e) =0

as n — oo for every choice of € > 0 and for all g € (0,00). In the following code, we compute
the above probability which is basically the integration

n(Bt+e) —% n-—1
e 5y
~an L0,00) (Y)Y
/nv(ﬁe) F(n BTL (0,00)

We use the function pgamma () to compute the probabilities P(Y < n(8Fe¢)) where Y ~ G(a =
n, ).

n_vals = 1:5000
beta = 3
eps = 0.1
n = 10
prob_vals = numeric(length = length(n_vals))
for(n in n_vals){
prob_vals[n] = pgamma(n*(beta + eps), shape = n, rate = 1/beta) - pgamma(n*(beta - eps), s!
}
plot(n_vals, prob_vals, xlab = "sample size (n)",
main = expression(P(abs(bar(X[n])-beta) < epsilon)),
type = "1", col = "grey", lwd = 2, ylab = "Probability")
legend ("bottomright", legend = bquote(epsilon == . (eps)),
lwd = 2, cex =1.4, bty = "n")
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P(Xn-pl<e)

Probability

— €=01
I I I I I I
0 1000 2000 3000 4000 5000

00 02 04 06 08 1.0

sample size (n)

Figure 1: As the sample size increases, the probability converges to 1. Students are encouraged
to experiment with different choices of 5 and e.

The Python code for computing the probability is attached below. We use gamma . cdf function
to calculate probabilities which works similar to pgamma in R.

Large Sample Approximation of Variance of Estimators

| Limiting Variance

For an estimator T,,, if
lim k,Var(T,) = 7% < oo,
n—oo

where {k,, } is a sequence of constants, then 72 is called the limiting variance or limit

of variances.

n_vals = c(3, 5, 10, 25, 50, 100)

mu = 2 # true mean value
rep = 1000 # number of replications
sigma = 0.5 # population sd (given)

par (mfrow = c(2,3))
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sample_means = numeric(length = rep)
for(n in n_vals){

}

t_n = numeric(length = rep)

for(i in 1:rep){
x = rnorm(n = n, mean = mu, sd = sigma)
sample_means[i] = mean(x)
t_nl[i] = 1/mean(x)

}

hist(t_n, probability = TRUE, col = "lightgrey",

xlab = expression(t[n]), main = paste('"n

xlim = c(0,1))
points(1/mu, O, pch = 19, col = "red", cex
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Figure 2: The sampling distribution of 1/X,, is visualized using the histograms based on 1000
simulations for different sample size n. As the sample size increases, the sampling
distribution gets highly concentrated about the value 1/pu.

— 1
The python code for visualizing the sampling distribution of X,  is provided beow.

par (mfrow = c(1,2))

n_vals = 1:1000

t_n = numeric(length = length(n_vals))
sample_means = numeric(length = length(n_vals))
for(n in n_vals){
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x = rnorm(n = n, mean = mu, sd = sigma)
sample_means[n] = mean(x)
t_n[n] = 1/mean(x)

}
plot(n_vals, t_n, col = "grey", lwd = 2,
xlab = "sample size (n)", main = expression(T[n]==1/bar(X[n])), ylab = "")
abline(h = 1/mu, col = "blue", lwd = 2, lty = 2)
plot(n_vals, sample_means, col = "grey", lwd = 2,
xlab = "sample size (n)", main = expression(bar(X[n])), ylab = "")

abline(h = mu, col = "blue", lwd = 2, 1ty = 2)

Tnzl/x_n X_n
3 <
© NI
o
Q o
k= 00 N T - "~~~ =--
o
g e
o
1T T 1T 1 1 1T T 1T 1 1
0 400 800 0 400 800
sample size (n) sample size (n)

Figure 3: For large n, as X,, values becomes close to i, then 1 /X,, values get closer to 1/u for
w # 0. In fact it shows that as n — oo, 1/X,, — 1/p.

— 1
Python implementation of the convergence of the X,  to % is given below.

Instead of the sample mean, one may also aim to estimate 1/u using the inverse of the sample
median. For large n, the approximations may be compared if we can compute the limiting
variances of the inverse of the sample median. Before, going into any mathematical compu-
tations, first let us check how the estimator based on the sample median behaves for large n
values.
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par(mfrow = c(1,2))
n_vals = 1:1000
t_n = numeric(length = length(n_vals))
sample_medians = numeric(length = length(n_vals))
for(n in n_vals){
x = rnorm(n = n, mean = mu, sd = sigma)
sample_medians[n] = median(x)
t_n[n] = 1/median(x)
}
plot(n_vals, t_n, col = "grey", lwd = 2,
xlab = "sample size (n)", main = expression(T[n]==1/Med(X[n])))
abline(h = 1/mu, col = "blue", lwd = 2, 1lty = 2)
plot(n_vals, sample_medians, col = "grey", lwd = 2,
xlab = "sample size (n)", main = expression(Med(X[n])))
abline(h = mu, col = "blue", lwd = 2, lty = 2)

T, =1/Med(X,) Med(X,)
©
— o
o <
© A n N
o [
8«
] 8 o
c S
- I L ___-_-_-_-_--
O T =======- L «
° £
[o0)
— g -
o O
S —
o
1T T T T 1 1T T T T 1
0 400 800 0 400 800
sample size (n) sample size (n)

Figure 4: The inverse of the sample median also appears to be a consistent estimator for 1/pu.

The python implementation of the above code for the convergence of Med(X,,)"! to i'is
demonstrated below.

Now let us check, how the sampling distribution of the estimator of 1/u based on the median,
that is, 1/Med(X,,) behaves for large n values.
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n_vals = c(3, 5, 10, 25, 50, 100)

mu = 2
rep = 1000
sigma = 0.5

par (mfrow = c(2,3))
sample_medians = numeric(length = rep)
for(n in n_vals){
t_n = numeric(length = rep)
for(i in 1:rep){
x = rnorm(n = n, mean = mu, sd = sigma)
sample_medians[i] = median(x)
t_ n[i] = 1/median(x)
}

hist(t_n, probability = TRUE, col = "lightgrey",
xlab = expression(Med(X[n])), main = paste("n =", n))
points(1/mu, 0, pch = 19, col = "red", cex = 1.4)
}
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The python code for the sampling distribution of Med(X,,)~! for different choices of n is shown
below:

For the above simulation experiments, it appears that both inverse of the sample mean and the
sample median appears to be a nice choice and both are approximately normally distribution
for large n. Let us now compare the inverse of the sample mean and sample median with
respect to their asymptotic variances. We basically obtain the sampling distribution of the
following two random variables for large n values.

and
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n_vals = c(3, 5, 10, 25, 50, 100)

mu = 2
rep = 1000
sigma = 0.5

par (mfrow = c(2,3))
sample_means = numeric(length = rep)
sample_medians = numeric(length = rep)

for(n in n_vals){

10

11
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24

t_n = numeric(length
w_n = numeric(length
for(i in 1:rep){

x = rnorm(n = n, mean = mu, sd = sigma)

rep) # inverse of sample mean
rep) # inverse of sample median

t_nli]
w_nl[i]

3

sqrt(n) *(1/mean(x) - 1/mu)
sqrt(n)*(1/median(x) - 1/mu)

plot(density(t_n), col = "red", lwd = 2, main = paste("n = ", n))

lines(density(w_n), col = "blue", lwd = 2)

legend("topright", legend = c(expression(bar(X[n])), expression(Med(X[nl]))),
col = c("red", "blue"), lwd = c(2,2), bty = "n")

points(0, O, pch = 19, col = "red", cex = 1.4)

354



o | X
® Med(X,)
2 9 2 2
2 3 2 2
e o o
(] — (] (]
o o | fa) fa)
—
o
g e
© TT T T T T
-04 0.0 04 0.8 -0.4 0.0 0.4 -0.4 0.0 0.4
N =1000 Bandwidth =0.02876 N =1000 Bandwidth =0.03034 N =1000 Bandwidth =0.02781
n= 25 n= 50 n= 100
o _ Xn o Xn
o Med(X,,) i Med(X,)
2 9o | 2 31 =2
(2] N 1] 1]
o o o
(] — (] — (4]
a o 8 o | fa)
- ] —
o o
. o . o
© TTT T T T © |
-04 00 04 -0.4 0.0 0.4 -0.4 0.0 0.4

N =1000 Bandwidth = 0.02659 N =1000 Bandwidth = 0.02885 N =1000 Bandwidth =0.02882

Figure 5: The simulation clearly demonstrates the comparison of the limiting variances of two
estimators of 1/.

! Variance of the limit distribution of T,

For an estimator T, suppose that

k, (T,

n

—7(0)) = N(0,0?)

in distribution. The parameter o2 is called the asymptotic variance or variance of the
limiting distribution of T,.

The python code for the comparison of the approximate sampling distribution for the large
sample size n is shown below:
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and

\/H<Tn—/1)—>N<O,Zj).

It is interesting to note that although the theoretical variance of T, = X,

In the above problem T, = X,

n

—1
n » Var(T,) = oo, but
2
it has finite asymptotic variance % for u # 0, which is in fact more useful. The computation

follows by a simple application of the Delta method, which gives Var(T,,) ~ 7;'—:4 < 0.

I Assymptotically efficient
A sequence of estimators of W, is asymptotically efficient for a parameter 7(0) if

where
P )
By ( (4108 £(X16))")

that is the asymptotic variance of W,, achieves the Cramer-Rao lower bound.

A natural question arises how to obtain an asymptotically efficient estimator, and we are lucky
that the MLE is itself gives us algorithmic way of obtaining asymptotically efficient estimator.
In the following section we discuss this in the light of an example.

MLE is asymptotically efficient

Suppose that X;,..., X, be a random sample of size n from the Poisson distribution with
parameter A. The Fisher Information is given by I(A) = A~!. The MLE of the parameter \ is
given by A = X,,. It can be easily shown by CLT that

Vi (X, —A) = N(0, ),

in distribution, therefore, the asymptotic variance of X, is A, in fact, it is exact variance as
well (why?). Let us perform some simulation experiment to see whether the claim is indeed
true or not.

lambda = 3
rep = 1000
n = 10

w_n = numeric(length = rep)
for(i in 1:rep){
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x = rpois(n = n, lambda = lambda)
w_n[i] = sqrt(n)*(mean(x) - lambda)
}
hist(w_n, probability = TRUE, col = "grey",
main = paste("n = ", n), xlab = expression(W[n]))
curve (dnorm(x, mean = 0, sd = sqrt(lambda)), add = TRUE,
col = "red", lwd= 2)

n= 10

A

0.20
|
N

Density
0.10
|

0.00
I

Figure 6: The experiment can be carried out for different choices of n. The overlaying of the
normal distriubtion with the asymptotic variance agrees with the theoretical claim.

The above idea can be extended for estimating any continuous function of A as well, say h(\).
We start with a concrete example. Suppose, we are interested in estimating

e AN2

Therefore, the estimator is given by
A - =2
r) = e X (X)) /2,
which is a highly nonlinear function of X,,. The theory suggests that

v (B(X) = h(X)) = N(0,0(N)),
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in distribution where

h = function(lambda){
lambda~2*exp(-lambda) /2

}

lambda = 3

rep = 1000

n =

n w |

v_n = numeric(length = rep)
for(i in 1l:rep){
x = rpois(n = n, lambda = lambda)
v_n[i] = sqrt(n)*(h(mean(x)) - h(lambda))
}
hist(v_n, probability = TRUE, col = "grey",

main = paste("n = ", n), xlab = expression(v[n]))

curve(dnorm(x, mean = 0, sd = sqrt(lambda”3*exp(-2*lambda)*(2-lambda)~2/4)), add = TRUE,

col = "red", lwd= 2)

n= 3

0 —

<t —
2
3 7 N
0 o 4

— —

/,/’
o - ?—?A
[ [ [ [ |
-03 -0.2 -01 0.0

Vi

Figure 7: The sample size is small, therefore, the histogram is not a good approximation of the
normal distribution. The reader is encouraged to do the simulation with different

values of n.

358

0.1



n_vals = c¢(5,10,25,50, 100, 500)
par (mfrow = c(2,3))
for(n in n_vals){
v_n = numeric(length = rep)
for(i in 1:rep){
x = rpois(n = n, lambda = lambda)
v_nl[i] = sqrt(n)*(h(mean(x)) - h(lambda))
}
hist(v_n, probability = TRUE, col = "grey",
main = paste("n = ", n), xlab = expression(v[n]))
curve (dnorm(x, mean = 0, sd = sqrt(lambda”3*exp(-2*lambda)*(2-lambda) ~2/4)),

12

13

14

15

add = TRUE, col = "red", lwd= 2)
print(var(v_n))

[1] 0.01143363

[1] 0.01377767

[1] 0.01556666

[1] 0.01512963

[1] 0.01624849
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Figure 8: As the sample size increases, the approximation to the normal distribution is cleraly
visible with the variance equal to the asymptotic variance.

[1] 0.01640191

In the following, we numerically (throughAsimulation) verify that how accurate the approxi-
mation of the variance by plugging in the A in place of .

Var (h(X)[))

n

(h"(\)?
I,(N)

(h"(A)?

By (— = log £(0]X))

o]’

62
T oN?
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In the above computation, two approximations have been carried out. In the first approxima-
tion the computation of the asymptotic variance has been carried out by the first order Taylor’s
approximation whereas in the second approximation, the expectation has been approximated
by plugging in the MLE at the Fisher Information.

par (mfrow = c(1,1))
n_vals = 1:1000
asym_var = lambda”3*exp(-2*lambda)*(2-lambda)~2/4
var_v_n = numeric(length = length(n_vals))
for(n in n_vals){
v_n = numeric(length = rep)
for(i in 1:rep){
x = rpois(n = n, lambda = lambda)
v_n[i] = sqrt(n)*(h(mean(x)) - h(lambda))
}

var_v_n[n] = var(v_n)

}

plot(n_vals, var_v_n, type = "p", col = "grey",
lwd= 2, xlab = "sample size (n)", ylab = "",
main = expression(Var(h(hat(lambda[n])))))

abline(h = asym_var, 1ty = 2, col = "blue",

lwd = 2)
N
Var(h(A,))

-
—
=
O' p—
-
o
S |
S

| | | | | |

0 200 400 600 800 1000

sample size (n)

Figure 9: As the sample size increases, the approximated variance is close to the asymptotic
variance. The asymptotic variance is shown using the dotted blue color line.
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Based on the discussion about the optimal properties of the MLE, we have the following
theorem:

I Asymptotic efficiency of MLE

Let X,,..., X, ,... be iid f(z]6), let 6 denote the MLE of 6, and let 7(6) be a continuous
function of 6. Under the regularity conditions on f(x|6), and, hence on £(0|x), the
likelihood function, R

Vi (7(8) = 7(6)) = N(0,0(6)),

where v(0) is the Cramer-Rao Lowe Bound. That is, 7() is a consistent and asymptoti-
cally efficient estimator of 7(6).

Statistical Model for Contaminated data

Suppose that we have a random sample of size n from the normal distribution with mean p and
variance 2. However, there is a contamination with some values from the other distribution
as well.

Consider the statistical model for the data with contamination as

% N(p,0?), with probability 1 — &
f(z), with probability 6.

In the following we simulate a random sample of size n from the distribution with 1006%
contamination.

mu = 2
sigma2 = 0.5

theta = 5
tau2 = 0.5

delta = 0.1
n = 100
x = numeric(length = n)
for(i in 1:n){
if (rbinom(n = 1, size = 1, prob = 1-delta)==1)
x[i] = rnorm(n = 1, mean = mu, sd = sqrt(sigma?2))
else
x[i] = rnorm(n = 1, mean = theta, sd = sqrt(tau2))
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}
hist(x, probability = TRUE, col = "grey")

Histogram of x

© _ —
o
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2 ©°
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(¢D)
0~
o
o |
o

Show that the mean and variance of X, is given by

Var (%) = (1= 0)% o7 4 =002

n

If 0 ~ pand o ~ 7, then Var(X,) ~ %2, that means it achieves nearly optimal efficiency.
However, the choice of f(x) plays a critical role. For example, if f(z) is Cauchy distribution,
then the variance becomes infinite. You are encouraged to do some simulation considering the
Cauchy distribution and plot the sampling distribution of X,, for different choices of 4.

I Breakdown value

Let X(q) < X5y < -+ < X|;,) be an ordered sample of size n, and let T, be a statistic
based on this sample. 7, has breakdown value b,0 < b < 1, if for every € > 0,

lim T, <o0 and lim T, =00
X((1-bynp =00 X({(1-(brepny) 00

+ The sample mean X,, has break down value 0.
o The sample median M,, has breakdown value %
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! Trimmed mean

(Casella and Berger 2002) An estimator that splits the difference between the mean and
median in terms of sensitivity is the a — trimmed mean, 0 < a < %, defined as follows.
Xinol7 the a—trimmed mean, is computed by deleting the an smallest observations and the
an largest observations, and taking the arithmetic mean of the remaining observations.
Show that if 7T, = Xina7 the a-trimmed mean of the sample, 0 < a < %, show that

29
0<b< 3.

Asymptotic normality of the M

Suppose that X;,..., X, be a random sample of size n from the population density function
f(z) with CDF F(x). Assume that the CDF is differentiable and median is p, that is F\(u) =
1

ok

e Step - I: Verify that, if n is odd, then

(M. — Q) — SY,—np, _ (n+1)/2—np,
P (Vn(M, — p) < a) P(an(l_pn)z \/npn(l_pn>>

+ Step - II: Show that as n — oo, p, = p = F(u) = 5 and

(n+1)/2—np,
np,(1—p,)

— —2aF"(p) = —2af(p).

e Step - III: It is clear from the statement

P (vn(M, —p) <a) = P(Z > —2af(n))

that \/n(M,, — p) is asymptotically normal with mean 0 and variance W
First let us understand the above result in terms of computer simulation and visualization. In
the following we first perform the experiment with the sampling from the normally distributed
population.

mu = 2
sigma2 = 1
f = function(x){
dnorm(x, mean = mu, sd = sqrt(sigma2))

}

364



18

19

20

21

22

par (mfrow = c(2,3))
n_vals = c(3,5,10,25,50, 100)
rep = 1000
for (n in n_vals) {
M_n = numeric(length
W_n = numeric(length
for(i in 1:rep){
x = rnorm(n = n, mean = mu, sd = sqrt(sigma2))
M n[i] = median(x)
W_nl[i] = sqrt(@)*M_n[i] - mw)
+

rep)
rep)

hist(W_n, probability = TRUE, main = paste("n = ",n),

xlab =expression(W[nl]), breaks = 30)
curve(dnorm(x, mean = 0, sd = sqrt(1/(4*f(mu)"2))),
add = TRUE, col = "red", lwd = 2)
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Figure 10: The sampling distribution of M,, is approximately normally distributed with asymp-
totic variance 1/(2f(u))?. For simulation 4 = 2 and 0 = 1 have been considered.

In the following, we perform the experiment with the exponential distribution with rate pa-
rameter X\. The median of the exponential distribution is given by u = mT2 We simulate the
distribution of \/n (Mn — th2) for different values of n and as n — oo, the normal approxima-
tion with the desired asymptotic variance is evident from the figures.

lambda = 2
mu = log(2)/lambda
f = function(x){
dexp(x, rate = lambda)
}

par (mfrow = c(2,3))
n_vals = c¢(3,5,10,25,50, 100)
rep = 1000

366



11

12

13

14

16

17

18

19

20

21

22

for (n in

M_n = numeric(length
W_n = numeric(length

n_vals) {

rep)
rep)

for(i in 1:rep){
x = rexp(n = n, rate = lambda)

M _n[i] = median(x)
W_nl[i] = sqrt@)*WM_n[i] - mu)
}
hist(W_n, probability = TRUE, main = paste("n = ",n),

xlab =expression(W[n]), breaks = 30)
curve (dnorm(x, mean = 0, sd = sqrt(1/(4*xf(mu)~2))),
add = TRUE, col = "red", lwd = 2)

}
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The simulation has been carried from the exponential dsitribution with rate pa-
rameter A = 2, therefore, the true median is u = 0.3465736.
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Based on the above discussion, the students are encouraged to explore the ARE of the median
to the mean, that is ARE (M,,, X, ).

« Show that ARE (M, X,,) is unaffected by scale changes. This, it does not matter
whether the underlying pdf if f(z) or L f ().

« Compute the ARE (M,,X,) when the underlying distribution is Students’ ¢ with v
degrees of freedom, for v € {3,5,10,25,50,00}. What is your conclusion about the ARE
and the tails of the distribution?

e Compute the ARE (Mn, X7n) when the underlying pdf is the Tukey model

x N(0,1) with probability 1 — d
N(0,0?) with probability §

Compute the ARE for a range of values of § and 0. What can you conclude about the
relative performance of the mean and the median?

Exercises

e Suppose that we are interested in estimating the location parameter p for the nor-
mal, logistic and double exponential distribution based on a sample of size n. Obtain
ARE (Mn, X7n) for each of the following distribution and discuss their comparative per-
formance.

o Suppose that X, X,, ..., X, be a random sample of size n from a population distribution
characterized by the following probability density function

1%, 0 <x<oo
o=z

, otherwise,

where 0 € © = (0,00) and we are interested in estimating the parameter . Obtain the
maximum likelihood estimator of 6, call it §,,. Check whether 6,, is an unbiased estimator
of 6. If not compute Bias, <0n) and check whether the estimator is asymptotically

unbiased. Compute the mean squared error of the estimator MSE, (a) Comment
whether the estimator is asymptotically consistent or not.

e Suppose that X, ..., X, be arandom sample of size n from a population following N (6, 9)
distribution, where 6 > 0.

— Show that the MLE of 6, 5,: is a root of the quadratic equation #2 +60 — W = 0,
where W = 1 Z?Zl X2, and determine which root is equals the MLE.

— Find approximate variance of 5,: using Delta method.
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Suppose that Y;,Y,,...,Y, be a random sample of size n which satisfies the following
equation
}/:i :/BX1+617 Z = 1,27...777/,

where X, ..., X,, are independent N (u,72) random variables and €, ... ¢, are IID

N(0,0?), and X’s and €’s are independent. In terms of i, 72 and o2, find the approximate
means and variances for the following quantities:

Y XY/ X7
Y/ X,
2 (Y /X))

Write a simulation program in R to check the sampling distributions of the above quantities
and experiment with different choices of i, 72 and o2. Comment on your findings.

Consider the following hierarchical model

Y, W, =w, ~ N(0,w,+(1—w,)o?) (0.4)

n

W, ~ Bernoulli(p,). (0.5)

Show that for Y,,, the limiting variance and the asymptotic variance differ.

— Show that E(Y,,) =0 and Var(Y,) = p, + (1 —p,)o2.
— Show that P(Y,)) — P(Z < a), where Z ~ N(0,1) for any a € R, and hence
Y, — N(0,1) in distribution.

Suppose that X;,..., X, be iid observations from the normal distribution with mean
EX = p and Var(X) = o2, Show that for T, = X:\/E:

n

— Var(T,) = oc.
— If 4 # 0 and we delete the interval (—d,0) from the sample space, then Var(T,) <
00.
— If p # 0, then the probability content of the interval (—d,d) approaches to 0 as
n — oo.
Suppose that X, ..., X,, be a random sample of size n from the Poisson(\) distribution

and we are interested in estimating the 0 probability. For example, the number of
customers that come into a bank in a given time period is sometimes modeled as a
Poisson random variable, and the 0 probability is the probability that no one enter the
bank in one time period. If X ~ Poisson(\), then P(X = 0) = e

— Consider the estimator of 7 = e as 7= 1 Z?:I Y;, where Y, = I(X, = 0). Show
that E(7) = e and Var(7) = el

n

— Consider another estimator of 7 as ¥ = e *, where ) is the MLE of A. Obtain the
asymptotic variance of 7.
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Demonstrate using computer simulations that the following claims holds true (a)
V(T —e?) = N(0,e*1—e ) and vn(F—e ) — N (0, e 2}). Also re-
port ARE (7,7) and plot it as a function of A and comment about your preferred
estimator.

o (Casella and Berger 2002) Suppose that X;, X,, ..., X, are iid Poisson(A). Find the best
unbiased estimator of

e, the probability X = 0
e, the probability X = 1.
For the best unbiased estimators in part (a) and (b), calculate the asymptotic
relative efficiency with respect to the MLE. Which estimators do you prefer and
why?
A preliminary test of a possible carcinogenic compound can be performed by mea-
suring the mutation rate of microorganisms exposed to the compound. An experi-
menter places the compound in 15 petri dishes and record the following number of
mutant colonies:

10,7,8,13,8,9,5,7,6,8,3,6,6,3,5.

Estimate e, the probability that no mutant colonies emerge, and Ae ™, the prob-
ability that one mutant colony will emerge. Calculate both the best unbiased esti-
mator of and the MLE.

o (Casella and Berger 2002) The performance of the sample mean in estimating the popu-
lation may be compromised if there is a correlation in the sampling. This can seriously
affect the properties of the sample mean. Suppose we introduce correlation in the sample

X,y X,, ~ N(u,0?), but X;s are no longer independent.
— For a equicorrelated case, that is, Corr(X;, X;) = p,i # j, show that
2
— o n—1
Var(X,,) = o + - po?,
so that Var(Xin)ﬂéO as n — oo.

— If the X,’s are observed throught time (or distance), it is sometimes assumed that
the correlation decreases with time (or distance), with one specific model being
Corr(X;, X;) = pli=Jl. Show that the variance is given by

2 2 n
S o 20 p ( 1—0p >
Var(X,)=—+ ———[n—
so that Var(X,,) — 0 as n — oo.
e The breakdown performance of the mean and the median continues with their scale
estimate counterparts. For example X, ..., X :

—\2
Show that the breakdown value of the sample variance $? = —1- 2?21 (X, —X,)

n—1
is 0.
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— A robust alternative is the mean absolute deviation, or MAD, the median of | X; —
M|, | Xy—M],...,|X,,—M]|, where M is the sample median. Show that this estimator
has a breakdown value 50%.
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Interdisciplinary Teaching of Statistical Data
Science

In many data science workshops, the instructor usually provides readymade code that partic-
ipants simply run, often without fully understanding how it works. Also, when a workshop
has too many speakers or unrelated sessions, participants can find it hard to follow the overall
flow.

This chapter describes a different kind of approach, designed especially for ecologists, more
generally to the interdisciplinary audience. The focus here is on learning through live discus-
sions, practical examples, and writing code together. All the codes shown in this chapter were
written live during the workshop, not prepared in advance and the participants wrote the same
code alongside the instructor in real time. The goal was to help participants think critically
and connect statistics to their own research. The case studies in this chapter reflect that
interactive approach, showing how hands on learning can make statistical ideas clearer and
more useful for ecologists. The case studies in this chapter reflect that interactive approach,
showing how hands-on learning can make statistical ideas clearer and more useful, not just for
ecologists, but for a broader interdisciplinary audience working with real world data.

Statistical Distributions

Probability distributions play a fundamental role in real-life data analysis problems. However,
their importance is often underestimated in many applications, leading students to blindly
accept the outcomes provided by software. Understanding probability distributions equips us
with the ability to grasp the inherent uncertainty in natural processes. Data collected from the
field are subject to various types of randomness, and probability theory provides a framework
for these random phenomena. In this manual, we shall understand various probability distri-
butions using R without getting into the mathematical intricacies of these distributions.

To understand the distribution theory using R, we need to learn about the four letters in R:
r, d, p, 9. We start our discussion with the coin tossing experiments. Suppose we want to
simulate a coin tossing experiment using R instead of performing that experiment physically.
Suppose the probability of success is p = 0.3. If we toss the coin 100 times say, we should
expect an approximately 30 many heads (intuition!). In the following, we do this experiment
once and observe that how many heads have been obtained. Certainly, the assumption that
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such experiments can be identically performed an infinitely many numbers of times remain
intact. As an applied researcher, we should just keep these statements as universally true.

p=20.3 # probability of head

n = 100 # number of throws

X = rbinom(n = n, size = 1, prob = p) # coin tossing experiment
print(x) # 1 = head, 0 = tail

sum (x) # number of heads

You are required to check whether the sum is actually 30 or not. If it appeared to be 30, do
this experiment once again, you are likely to get another number, however, that is expected
to be close to 30. As an ecologist, each run of the above code may be considered as follows: 1
visited a site consecutively 100 days and, on each day, we record 1 if we observe a phenomenon
of our interest, otherwise record 0. Although, it is highly superficial to consider that conditions
of all the 100 are identical, but somewhere, we need to start the discussion also to get into a
more complicated statistical thinking.

In the above code the quantity x contains a possible realization of coin tossing experiment
(called Bernoulli trial). Out of 100 positions, each position can be filled with 2 ways (either
0 or 1). Therefore, there are a total 2'°° possible realizations of the coin tossing experiment.
Similarly, in observations on the phenomenon of your interest, out of 2'%° possibilities, we
have obtained a particular sequence of 0’s and 1’s, which we call as the field observations. The
Bernoulli(p) distribution essentially acts as a probability model for the natural process from
which we have collected the observations. Our interest may be to get an accurate estimate of
the unknown probability p (with certain confidence!).

Statisticians often say to ecologists that if you provide more data then he/she could give you
better estimates. This is not a magic. This simple coin tossing experiment itself may reveal
this justification adequately. Suppose that we toss the coin n times and record the number
of successes, then obtain the proportion of success as an estimate of p. We then increase the
number n and see whether, the proportion of success becomes close to the true probability
0.3 using which the simulation experiment has been carried out. We need to have cautionary
note here, in the field experiment we never (ever) know what the underlying truth, that is
what is the exact value of probability of observing the phenomena. However, in a computer
simulation, we know that the experiments have performed by setting p = 0.3. Therefore, we
can verify whether the proportion of success gets closer to the true value as the sample size
increases. The following example will demonstrate this fact:

p=20.3 # true probability
n_vals = 1:1000 # sample size
p_hat = numeric(length = length(n_vals)) # sample proportion
for(n in n_vals){

X = rbinom(n = n, size = 1, prob = p) # simulate coin tossing
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p_hat[n] = sum(x)/n # proportion of success
}
plot(n_vals, p_hat, type = "1", xlab = "sample size (n)",
ylab = expression(widehat(italic(p))), col = "grey",
cex.lab = 1.3, 1lwd = 2)
abline(h = p, col = "blue", lwd = 2, 1ty = 2)

00 02 04 06 08 10

0 200 400 600 800 1000

sample size (n)

Figure 1: You will see the similar picture in your computer for the coin tossing experiment. It
is visible that as the sampling size increases, the sample proportion of success are
closer to the true probability 0.3.

In the above code snippet, we observed the use for loop, numeric() function, mathematical
annotation using expression(), use of colour in plots, abline() function for horizontal line
plot, etc. We have used to letter r to simulate random numbers from the Bernoulli(p) experi-
ment. Similarly, we can simulate random numbers from the desired probability distributions.
Now we discuss the favorite bell-shaped curve: the normal distribution which appears every-
where! The normal distribution is characterized by the two quantities mean p and variance o2.
The quantity p can be any real number, where as the variance must be bigger than zero. First,
we simulate n=100 random numbers from the normal distribution with parameters y = 3 and

02 = 1. Note that the square-root of the variance is the standard deviation (denoted as sd).

par(mfrow = c(1,3)) # side by side plot
mu = 3 # mean
sigma = 1 # sd
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n = 100 # sample size
x = rnorm(n = n, mean = mu, sd =sigma) # simulate numbers
hist(x, probability = TRUE, main = "", cex.lab = 1.4)
curve(dnorm(x, mean = mu, sd = sigma), lwd = 2,

col = "red", add = TRUE) # add normal PDF
legend("topright", legend = "N(3,1)", lwd = 2,

col = "red", bty = "n") # add legend
mu = 3 # mean
sigma = 2 # standard deviation
n = 100 # sample size
x = rnorm(n = n, mean = mu, sd = sigma) # simulate observations
hist(x, probability = TRUE, main = "", cex.lab = 1.4)

curve(dnorm(x, mean = mu, sd = sigma), lwd = 2,
col = "red", add = TRUE)

legend("topright", legend = "N(3,2)", lwd = 2,
col = "red", bty = "n")

mu = 0
sigma = 1
n = 100

x = rnorm(n = n, mean = mu, sd = sigma)
hist(x, probability TRUE, main = "", cex.lab = 1.4)
curve (dnorm(x, mean = mu, sd = sigma), lwd = 2,
col = "red", add = TRUE)
legend("topright", legend = "N(0,1)", lwd = 2,
col = "red", bty = "n") # add legend
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Figure 2: Simulation of normally distributed observations with fixed mean and variance spec-
ified by the user. The actual normal probability density function is overlaid on the
same plot. The histograms are in close agreement with the theoretical probability
density function.

You are encouraged to execute the following codes, to understand the role of letter r in
simulation of random numbers in R.

n = 100 # sample size

x = rexp(n = n, rate = 1) # simulation of exponential rv
hist(x, probability = TRUE) # histogram

curve(dexp(x, rate = 1), add = TRUE) # adding the exact PDF
help("rexp") # get help in R

n = 100

x = runif(n = n, min = 0, max = 2) # simulation of uniform(0,2)

hist(x, probability = TRUE)
curve (dunif (x, min =0, max = 2), add = TRUE)
help("dunif")

100

x = rgamma(n = n, shape = 3, rate = 2) # simulation of Gamma(3,2)
hist(x, probability = TRUE)

curve(dgamma(x, shape = 3, rate = 2), add = TRUE)

n
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help("rgamma")

Poisson distribution

The Poisson distribution commonly appears in the ecological problems that deals with the
count data. For example, ecologists studying the ant colonies often assume that the number
of eggs laid by an individual ant follows a Poisson distribution with rate parameter A > 0
(which is the parameter of interest). For the Poisson distribution, the mean and variance of
the distribution are same (\). Applications of Poisson distribution also appears in studying the
distribution of rare plants in large forests (Krebs, Charles J. 1999. “Ecological Methodology.”
2nd ed. Benjamin-Cummings). The following code can be used to simulate random numbers

from the Poisson distribution with fixed rate parameter .

par (mfrow = c(1,1))

n = 100

lambda = 4

x = rpois(n = n, lambda = lambda)
print(x)

# sample size
# rate parameter
# simulate Poisson RV

Using the function dpois (), we can draw the Poisson probability mass function. The following

code will do this task.

par (mfrow = c(1,2))

x = 0:15

lambda = 2

prob = dpois(x, lambda = lambda)

plot(x, prob, type = "h", col = "grey", lwd = 2,
cex.lab = 1.3, ylab = "P(X=x)",
main = expression(paste(lambda, " = 2")))

points(x, prob, pch = 19, cex = 1.5, col = "blue")

lambda = 5
prob = dpois(x, lambda = lambda)
plot(x, prob, type = "h", col = "grey", lwd = 2,
cex.lab = 1.3, ylab = "P(X=x)",
main = expression(paste(lambda, " = 5")))
points(x, prob, pch = 19, cex = 1.5, col = "blue")
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Figure 3: The Poisson distribution for different choices of A. The function dpois() have been
used to compute the exact probability values for the Poisson distribution at each
value from the set {0,1,2,...,15}.

Modelling and Simulation

Mathematical models are commonly used to model the growth process in natural sciences and
these models often include a stochastic component to incorporate the uncertainty inherent
in the natural processes. Regression models play important role in ecological data analysis.
To demonstrate the next statistical model fitting exercises, we consider the following data set
which is available in R. The following

data("trees")

head(trees) first six observations
summary (trees) summary of the data set
dim(trees) data dimension

complete.cases(trees)
tail(trees)
class(trees)

checking for missing rows

H OH HF H R

last six observations

names (trees) # names of the columns
head(trees, n = 10) # first ten observations

tail (trees) # last six observations
str(trees) # structure of the data frame
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This data set provides measurements of the diameter, height and volume of timber in 31 felled
black cherry trees. Note that the diameter (in inches) is erroneously labelled Girth in the
data. The data set is available in datasets package in R. Before starting any analysis, it is very
important to get an understanding of the data set with different visualization techniques.

par (mfrow=c(1,2))
data("trees")
summary (trees) # data summary

Girth Height Volume
Min. : 8.30 Min. 163 Min. :10.20
1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40
Median :12.90 Median :76 Median :24.20
Mean :13.25 Mean 176 Mean :30.17
3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30
Max. :20.60 Max. : 87 Max. :77.00

boxplot(trees, col = 2:4, main = "Box plot")
library(vioplot) # violin plot
vioplot(trees, col = 2:4, main = "Violin plot")

Box plot .
Violin plot

=] 5 @

= B 1
| | | | | |
Girth Volume Girth Volume

20 40 60 80
20 40 60 80

Figure 4: The left plot is the boxplot, and the right plot is the violin plot of the variables
present in the trees data set. The volume variable is a positively skewed variable.
The height of the plant is slightly negatively skewed.

Often histograms are also utilized for visualization of the data distribution of the observations.
The following code can be used to draw the histograms. It is to be noted that the $ symbol is
used to access the columns from the data.frame in R.
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1 par(mfrow = c(1,3))

2 hist(trees$Girth, probability = TRUE, main = "",
3 xlab = "Girth", cex.lab = 1.3, col = 2) # histogram of Girth
4+ hist(trees$Height, probability = TRUE, main = "",
5 xlab = "Height", cex.lab = 1.3, col = 3) # histogram of height
6 hist(trees$Volume, probability = TRUE, main = "",
7 xlab = "Volume", cex.lab = 1.3, col = 4) # histogram of volume
S
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Figure 5: The histogram is based on the observations obtain from each tree and there is total
31 observations.

Exploring the relationship between different columns in the data set is often considered as
the first step of modelling exercises. As a research statement, we may consider that whether
the Girth and Height of a tree are a good predictor of the Volume. The pairs() function
is a magical function in R that gives a great visual representation to explore the pairwise
relationship of variables in the data.

1 pairs(trees, col = "red", pch = 19)
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Figure 6: The data indicates that there is a linear relationship between the Girth and Volume.
Between Height and Volume also it is there, however, it is not as strong as the Girth
variable.

There are interesting packages in R that allows to explore the correlations between variables
with great visualizations. The package corrplot allows great flexibility in presentation of cor-
relation between variables. The following codes will help you to understand different varieties
of representation of the correlation matrix.

par (mfrow = c(2,3))
library(corrplot)
corrplot(cor(trees))
cor(trees)

Girth Height Volume
Girth 1.0000000 0.5192801 0.9671194
Height 0.5192801 1.0000000 0.5982497
Volume 0.9671194 0.5982497 1.0000000

#help("corrplot")

corrplot(cor(trees), method
corrplot(cor(trees), method
corrplot(cor(trees), method
corrplot(cor(trees), method

"number")

"number", type = "upper")
"ellipse", type = "upper")
“pie")
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Figure 7: The corrplot package offers various graphical visualization to represent the correla-
tions among the variables in the data set. The colour gradients are useful to represent
the strong (positive or negative) correlation.

apply family of functions

The apply family of functions is an important way of computing various statistical character-
istics of the data. Suppose that we are interested in computing the median of each column of
the dataset. Individually, we can take each column of the data and compute it. However, the
following code will help it to do it quickly.

apply(X = trees, MARGIN = 2, FUN = mean) # column means
apply(X = trees, MARGIN = 2, FUN = median) # column medians
apply (X = trees, MARGIN = 2, FUN = sd) # column sd

In the apply function, MARGIN = 2 corresponds to the columns, whereas MARGIN = 1 corre-
sponding to the rows.

In the first step of the analysis, suppose we aim to predict the Volume of the timber using the

tree diameter. Therefore, we consider following statistical model

Volume = 3, 4+ 5, x Girth + e. (0.1)
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In the above expression, Volume is the response variable and Girth is the predictor variable.
By and f3; are the intercept and the slope parameters of the population regression line, respec-
tively. The e represents the random component that cannot be explained through the linear
relationship between the response and predictor. We also assume that € ~ N (0,02). In the
above equation, Girth is fixed and € is random, which makes the Volume as a random quantity

and follows normal distribution with mean 3, + 3; x Girth and variance o2.

It is very important to note that assumption of such relationships at the population level
mostly driven by the visualization and existing knowledge pool about the underlying process.
In this case, from the scatterplot, we have hypothesized that a linear relationship between
the Volume and the Girth may be a reasonable assumption to consider. In principle, the true
nature of the relationship is always unknown. With our scientific instruments, we can probably
identify a most likely relationship from a set of reasonable hypotheses. However, in this case,
our visualization is quite clear, and we go ahead with the assumption of linear relationships.

Our goal is to estimate the parameters 3,, 3; and 0. There are 31 observations, and we write
down the data model as

Volume; = 3, + 8, x Girth; +¢;,i € {1,2,...,n}.
We seek to obtain the estimate of 3, and /3; that minimizes the error sum of squares:

31

Z(Volumei — By — By x Girth;)2.

=1

Using R, we can estimate the parameters of the interest. The following code will do this task
for us. In this case, we have only one predictor and one response, therefore, it is called as a
simple linear regression. The function 1m() understand the formula Volume ~ Girth as an
input and identifies which one is response and which one is predictors.

fit = Im(formula = Volume ~ Girth, data = trees)
coefficients(fit) # estimated coefficients

(Intercept) Girth
-36.943459 5.065856

summary (fit) # summary of the fitting

Call:
Im(formula = Volume ~ Girth, data = trees)
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Residuals:
Min 1Q Median 3Q Max
-8.065 -3.107 0.152 3.495 9.587

Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) -36.9435 3.3651 -10.98 7.62e-12 **x
Girth 5.0659 0.2474 20.48 < 2e-16 **x*
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.252 on 29 degrees of freedom
Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

The most important part in the output to understand the interpretation of the p-value which
is represented as Pr(>|t|). The fitting exercise also perform the testing of two hypotheses

Hy: By =0versus H; : B, #0

If reject the null hypothesis Hy, : 5; = 0 (at certain level of significance, say 5%), that means the
tree diameter (Girth) has a good contribution in predicting the volume of timber.***indicates
that the tree diameter is highly significant in determining the volume of timber. The same
interpretation goes to the intercept as well. A multiple R-squared value of 0.9353 indicates that
the approximately 94% of the variation in the Volume can be explained by the tree diameter
through a linear function. In this case, this is quite satisfactory.

par (mfrow = c(1,2))
plot (Volume ~ Girth, data = trees, col = "red", pch = 19)
abline(fit, col = "blue", lwd = 2)

resid = residuals(fit) # residuals of fit
hist(resid, probability = TRUE, xlab = "residuals",

main = "")
shapiro.test(resid) # test for normality

Shapiro-Wilk normality test

data: resid
W = 0.97889, p-value = 0.7811
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Figure 8: The fitting of the linear regression and the distribution of errors are shown using
histograms. The red dots indicate the actual observations, and the blue line is the
fitted line.

It is important to check whether the error is normally distributed. We have used the
shapiro.test() to check for the normality. A large p-value indicates the acceptance of the
null hypothesis that is the errors are normally distributed. After the fitting exercises, the
regression diagnostics must be performed to check the validity of the assumptions that we
have made at the starting of the discussion. Using the following piece of codes, we can get a
visualization of the regression diagnostic tools.

par (mfrow = c(2,2))
plot(fit, pch = 19, col = "blue", lwd = 2)
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Figure 9: The plot in the top left corner gives indication of the existence of potential nonlin-
earity relationship between the response and the predictor. We expect the red line
to be horizontally linear to have a better fitting. Such curvy relationship indicates
that may be a polynomial expression for the predictor may be a better choice.

Although we have obtained the coefficient of determination (R?) is approximately 94%, the
residual versus fitted plot gives a slight indication of nonlinearity. Suppose we plan to make
this model quadratic in the following way:

Volume = f, + 8, x Girth + f, x Girth” + ¢. (0.2)

Note that in this case, the model complexity increases (with additional parameter (3, to be
estimated). The other assumptions remain the same. The same function 1m() in R can be
utilized to estimate the parameters. We utilize the wrapper I(.) to include the polynomial
expression in R.
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par(mfrow = c(1,2))
fit2 = Im(formula = Volume ~ Girth + I(Girth~2),

data = trees) # quadratic fit
summary (fit2) # fit summary

Call:
Im(formula = Volume ~ Girth + I(Girth~2), data = trees)

Residuals:
Min 1Q Median 3Q Max
-5.4889 -2.4293 -0.3718 2.0764 7.6447

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 10.78627 11.22282 0.961 0.344728
Girth -2.09214 1.64734 -1.270 0.214534
I(Girth~2) 0.25454 0.05817 4.376 0.000152 *xx*

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

Residual standard error: 3.335 on 28 degrees of freedom
Multiple R-squared: 0.9616, Adjusted R-squared: 0.9588
F-statistic: 350.5 on 2 and 28 DF, p-value: < 2.2e-16

By considering quadratic regression model, the coefficient of determination has increased to
96% from 94%. However, the p-values suggest that the intercept and first order component
do not have significant contribution in explaining the variation in Volume of timber through
a quadratic regression model. It essentially says that the model is as good as having the
expression as Volume= [, x Girth + e.

par (mfrow = c(1,2) )
plot (Volume ~ Girth, data = trees,

col = "red", pch = 19) # original data
lines(trees$Girth, fitted.values(fit2),
col = "blue", lwd = 2) # fitted curve
resid2 = residuals(fit2) # residuals
hist(resid2, probability = TRUE, xlab = "residuals",
main = "") # residual distribution
shapiro.test(resid2) # test for normality

Shapiro-Wilk normality test
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data: resid2
W = 0.97393, p-value = 0.6327
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Figure 10: Fitting of the quadratic regression model. The fitted equation is Volume=
10.78627 — 2 x Girth +0.25454 x Girth®. However, the parameters b, and b, are not
statistically significant. The histogram of the error remains normally distributed.

1 par(mfrow = c(2,2))
2 plot(£fit2, col = "blue", pch = 19, lwd = 2)
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Figure 11: In the top left plot, we can see that the red horizontal line is approximately linear.

Now basically we have two statistical models. A natural question arises, whether making
the mode complex, that is, considering quadratic from the linear regression, we have gained
significantly or not. R provides a simple way of comparing two fitting exercises.

anova(fit, fit2)

Analysis of Variance Table

Model 1: Volume ~ Girth
Model 2: Volume ~ Girth + I(Girth~2)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 29 524.30
2 28 311.38 1 212.92 19.146 0.0001524 x*x*x*
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The null hypothesis of the anova() function is that both the model performs equally well.
However, from the obtained p-value of the output, the null hypothesis is rejected (very small
p-value, **x*).
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Prediction and Confidence intervals
We go back to our original regression object fit (the simple linear regression) for discussing
the difference between prediction and the confidence interval. Suppose we want to predict the

volume of the timber for a new tree whose measurement of the diameter of the tree is provided
and we plan to use the equation

Volume = f, + 3, x Girth.

It is an important task to report the uncertainty associated with the prediction. The variance
associated with the prediction can be obtained by using the following formula:

Var(VMe) = Var(go) + Var(ﬁAl) x Girth® + 2 x Girth x Cov (50,51> .

In the above, we have just applied the commonly known formula

Var(aX +bY) = a*Var(X) + b*Var(Y) + 2ab x Cov(X,Y).

In the following we obtain the estimate of the Volume of timber as 59.30781 cubic ft for the
tree having diameter of 19 inches with standard error of the estimate as 1.614811 cubic ft.
Run the following code and understand the prediction interval is wider than the confidence
interval.

new = data.frame(Girth = c(19))
predict(fit, newdata = new, se.fit = TRUE)

$fit
1
59.30781

$se.fit
[1] 1.614811

$df
[1] 29

$residual.scale
[1] 4.251988
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predict(fit, newdata = new, interval = "prediction")

fit lur upr
1 59.30781 50.0055 68.61013

predict(fit, newdata = new, interval "confidence")

fit lwr upr
1 59.30781 56.00515 62.61047

We first plot the prediction and the confidence intervals in the same plot and observe that the
prediction intervals are wider than the confidence intervals. The reason is that the prediction
intervals account for the randomness in the error component as well as the estimates in the
systematic component. The confidence interval only considers the variation in ﬁAO and 31’ not
the variance of €. Therefore, for prediction interval the variance of the prediction is computed
as:

Var(Volume) = Var(8, + 3, x Girth + ¢)
= Var(BAO) + Var(f,) x Girth® + 2 x Girth x Cov (ﬁAO, BAl) + Var(é). (0.4)

The presence of an extra component Var(e) is evident from the calculations.

par (mfrow = c(1,1))

plot (Volume ~ Girth, data = trees, cex.lab = 1.2,
col = "red", pch = 19, ylim = c(0, 80))

new = data.frame(Girth = seq(8, 22, by = 0.5))

pred_interval = predict(fit, newdata = new,

interval = "prediction") # prediction
conf_interval = predict(fit, newdata = new,
interval = "confidence") # confidence
lines(new$Girth, pred_intervall,2], col = "magenta",
lud = 2, 1ty = 2)
lines(new$Girth, pred_intervall[,3], col = "magenta",
lud = 2, 1ty = 2)
lines (new$Girth, conf intervall[,2], col = "blue",
lud = 2, 1ty = 2)
lines(new$Girth, conf_intervall,3], col = "blue",
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lud = 2, 1ty = 2)
legend("topleft", legend = c("Prediction Interval",
"Confidence Interval"),
col = c("magenta", "blue"), lwd = c(2,2),
1ty = c(2,2), bty = "n")
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Figure 12: The prediction and the confidence intervals are plotted. The prediction intervals
are wider than the confidence intervals (see text).

Incorporating other covariates

Till now we have discussed the regression model with a single predictor. However, there is
another predictor Height (in ft) is also there. Suppose that we are now interested in including
this covariate in modelling the Volume of timber using the following multiple linear regression
model:

Volume = 3, + 5; x Girth + 8, x Height + €
{$eq-trees MLR}

Using the 1m () function in R, we can perform the fitting exercises and subsequently perform the
regression diagnostics. The formula Volume ~ Girth + Height is understood as a multiple
linear regression model by the 1m() function.

fit3 = Im(formula = Volume ~ Girth + Height, data = trees)
summary (£it3) # summary of MLR
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Call:
Im(formula = Volume ~ Girth + Height, data = trees)

Residuals:
Min 1Q Median 3Q Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847

Coefficients:
Estimate Std. Error t value Pr(>ltl)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 **x*
Girth 4.7082 0.2643 17.816 < 2e-16 **x
Height 0.3393 0.1302 2.607 0.0145 *
Signif. codes: O 'x*x*' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16

Note that addition of another predictor gives the multiple R-squared value approximately
95%, that is, we have obtained approximately 1%. Using the anova() function, we can check
whether this increment is significant or not.

anova(fit, fit3)

Analysis of Variance Table

Model 1: Volume ~ Girth
Model 2: Volume ~ Girth + Height

Res.Df RSS Df Sum of Sq F PrOOF)
1 29 524.30
2 28 421.92 1 102.38 6.7943 0.01449 *
Signif. codes: O '**xx' 0.001 '%x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The ANOVA table suggests only a marginal improvement is obtained by adding an extra
covariate in the model. Such decisions are very important in the analysis of field data and
must be reported with proper explanation. Often it is cited as the Art of Data Analysis, rather
than the Science of Data Analysis.

In this case, the fitted regression function will be a plane instead of a line. In the following,
we write a small piece of codes, that will plot of the regression plane. The persp() function
in R is useful to draw three dimensional plots.
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Girth_vals = seq(min(trees$Girth)-2,
max (trees$Girth)+2, by = 1)
Height_vals = seq(min(trees$Height)-2,
max (trees$Height)+2, by = 1)
fit3_vals = matrix(data = NA, nrow = length(Girth_vals),
ncol = length(Height_vals))
for(i in 1:length(Girth_vals)){
for(j in 1:length(Height_vals)){

fit3_vals[i,j] = coef(fit3)[1] + coef(£fit3) [2]*Girth_vals[i] + coef (£it3) [3]*Height_vals

¥

} # Computation of predicted values

par(mfrow = c(1,1))

persp(Girth_vals, Height_vals, fit3_vals,
col = "grey", xlab = "Girth", ylab = "Height",
zlab = "Volume", theta = 10, cex.lab = 1.3)

awn|o

- Girth =

However, we can use plot3D package to generate nice plots. The colour gradients of the
regression plane shade important light about the contribution of the predictors in the variation
of the response variable.

library(plot3D)
persp3D(Girth_vals, Height_vals, fit3_vals,
xlab = "Girth", ylab = "Height",
zlab = "Volume", theta = 40, cex.lab = 1.3,
alpha = 0.2)
points3D(trees$Girth, trees$Height, trees$Volume,
col = "black", pch = 19, add = TRUE)
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Figure 13: Fitted regression plane with two covariates Girth and Height. The response is
the Volume of timber. The regression plane is given by the following equation:
Volume=-57.9876589 + 4.7081605 x Girth + 0.3392512 x Height. The colour
gradients shade important light about the effect of the predictors. Along the Girth
axis, the changes in the colour intensity are large and as Girth increases, the changes
in the colour intensity are significant. However, along the Height axis, there is no
changes in the colour intensity. This also indicates that as Height changes, predicted
volume of the timber does not change.

Using the package scatterplot3d, we can have interesting three dimensional visualization.
The participants are encouraged to see the help file of the function scatterplot3d().

library(scatterplot3d)

scatterplot3d(trees$Girth, trees$Height, trees$Volume,
xlab = "Girth (inches)",
ylab = "Height (ft)", zlab = "Volume (cubic ft)",
pch = 19, cex.lab = 1.2)
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Figure 14: R also offers nice 3D visualization of the data sets using the scatterplot3D function.

Impact of outliers in a regression model

There are some interesting functions in R which helps us to identify the influential points and
leverage points in the regression model.

par (mfrow = c(1,2))
cooks.distance(fit)

1

1.098362e-01 4.924417e-

7

1.528743e-02 5.099320e-

13

4.656599e-04 1.278988e-

19

4.450995e-02 6.408063e-

25

1.847520e-02 6.459356e-

31
8.8805681e-01

2
02

8
04
14
03
20
02
26
02

3
2.223564e-02
9
1.602747e-02
15
2.524848e-02
21
2.754799e-04
27
5.008387e-02

# computing

4

4.160457e-05 3.971050e-

10

1.583849e-05 2.080153e-

16

3.718828e-02 2.809168e-

22

1.137428e-02 5.014444e-

28

7.597544e-02 2.844384e-

plot(cooks.distance(fit), pch = 19, col = "red",
cex.lab = 1.3, main = "Cook's Distance",

cex.main = 1.3)

plot(Volume ~ Girth, data

pch = 19, cex.lab

= trees, col

5
03
11
02
17
02
23
05
29
02

Cook’s distance

6
6.044249e-03
12
4.922094e-05
18
8.762270e-03
24
6.088904e-02
30
3.976321e-02

# plot the distance per obs

= "red" ,

1.3, main = "Fitted Lines",
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cex.main = 1.3)

abline(fit, col "blue", lwd = 2) # adding the fitted line
fit4d = Im(formula = Volume ~ Girth, data = trees[-31,])
abline(fit4, col = "magenta", lwd = 2) # fit without outlier

legend("topleft", legend = c("with 31", "without"),
col = c("blue", "magenta"), lwd = c(2,2), bty = "n")
points(trees$Girth[31], trees$Volume[31], col = "magenta",

cex = 2, lwd = 3) # mark the outlier
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Figure 15: For each row, we obtained the Cook’s distance and observe that the 31st observation
has the highest Cook’s distance. In the right panel we fitted the regression model
with and without the 31st observation. The fitted lines are shown in blue and
magenta colour respectively. It is evident that the presence deletion of the 31st
observation has changed the slope estimate significantly.

Universality of the normal distribution

We recollect the example of estimating the true probability of the success (p) from the coin
tossing experiment. If we toss the coin n times and compute the proportion of success (p,,). We
keep the suffix n just to remind us that the distribution of the proportion of success changes
as n changes.
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a) Suppose we fix n (the sample size) and simulate n coin tossing experiment using R with
fixed success probability p = 0.3.

b) We repeat this process M = 1000 times. In each repetition, we store the value of the
proportion of success.

c¢) From the step (b) we have M = 1000 many proportions of success (possibly different
values).

d) Draw a histogram of the values obtained in the previous steps.

e) Repeat (a) — (d) for different choices of n.

In the following, we implement the above steps. Let us remind ourselves that we are dealing
with a coin tossing experiment and there is no discussion of normal distribution yet. One can
envision the above simulation experiment as involving one thousand volunteers each tossing
identical coins n times and reporting the proportion of successes. Intuitively, these proportions
will vary due to inherent randomness. Our goal is to determine if this randomness can be
described by a known probability distribution.

par (mfrow = c(2,3))

p=20.3 # true P(success)

n_vals = c(5, 10, 20, 50, 100, 500) # sample size

M = 1000 # number of replications
for(n in n_vals){ # loop of sample size

p_hat = numeric(length = M)

for(i in 1:M){ # loop on replications
x = rbinom(n = n, size = 1, prob = p)
p_hat[i] = sum(x)/n # sample proportion

+

hist(p_hat, probability = TRUE, main = paste("n = ", n),

xlab = expression(widehat(p[n])), cex.lab = 1.3,
cex.main = 1.3)
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Figure 16: The variation in the proportion of success is visualized using histograms. The
number of replications is 1000. It is interesting to see that as the sample size
increases, the histograms tend to behave like bell-shaped.

In the above simulation experiments, we observed that the histograms are centred about the
true value p = 0.3. Let us compute the variance. Although, we do not belong to the statistics
background, but simple basic calculations will help us to become better quantitative ecologists.

For example, here, we want to compute Var(p,,).
First recall that if a random variable X takes only two values 1 or 0 with probability p and 1—p
respectively. Then the expectation of the random variable X, denoted by F(X) is computed

as follows:

E(X)=0xP(X=0)+1xP(X=1)=p

Therefore, empirically, we can say that from a single through of a coin, we can expect p many
successes. This statement makes much more sense, when we say that if we toss the coin 10
times, approximately, the number of successes will be 10p. In other words, the proportion of
successes in 10 repetitions of coin tossing experiment will be close to p. The variance of X is

computed as follows:

Var(X)=E(X?) — (BE(X))??=0>xP(X=0)+12xP(X=1)—p?>=p—p*=p(1—p).

399



10

11

12

13

14

15

16

We can think of the outcome of each coin tossing experiment as a random variable taking
values either 1 or 0. Let X,--, X, be the outcome of the n coin tossing experiment and
P(X = 1) = P(Head) = p. Therefore, the number of successes is X; + X, + -+ + X, and
outcome X; does not impact X, and similar for all the pairs.

Var(p,) = Var (
Therefore, the standard error of p,, is

SE(7) = p(ln— p)'

In the previous code snippet, we overlay each of the histogram with the normal density function

with mean p and standard deviation 4/2 (1;” ),

par (mfrow = c(2,3))

p=0.3

n_vals = c(5, 10, 20, 50, 100, 500) # sample size

M = 1000 # number of replications

for(n in n_vals){
p_hat = numeric(length = M)
for(i in 1:M){
x = rbinom(n = n, size = 1, prob = p)
p_hat[i] = sum(x)/n
}
hist(p_hat, probability = TRUE, main = paste("n = ", n),
xlab = expression(widehat(p[n])), cex.lab = 1.3,
cex.main = 1.3)
curve (dnorm(x, mean = p, sd = sqrt(px(1-p)/n)),
add = TRUE, col = "red", lwd = 2) # add normal PDF
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Figure 17: It is interesting to see that as the sample size increases, the variation in the pro-
portion of success is well captured by the normal distribution with mean p and

variance @.

The reader is encouraged to perform the above experiment for other distributions as well, like
Poisson(\), Geometric(p), Exponential(3), Gamma(c, 3), Beta(a,b), etc. The letter r will be
used for simulation purposes for all the distributions.

To summarize, basically, p,, is an average of the outcomes X,’s and the randomness in the
average values can be well approximated by the normal distribution. This is due to the well-
known Central Limit Theorem which states that the sample mean is well approximated by the

normal distribution for large sample size n.
For the reader, we repeat this experiment using the exponential distribution with parameter

B = 1. The exponential distribution with mean g is given by

B (&
0, Otherwise.

fz) =

{1 7%, 0<ax<oo

The curve function can be conveniently used to draw the exponential PDF for different values
of . In the following, we plot three PDF side by side for 8 € {1,2,0.5}.

par(mfrow = c(1,3))
2 curve(dexp(x, rate = 1), col = "red", -1, 6,
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lwd = 2, main = expression(paste(beta, " =", 1)),
cex.main = 1.4, cex.lab = 1.3)

curve(dexp(x, rate = 2), col = "red", -1, 4,
lwd = 2, main = expression(paste(beta, " =", 2)),
cex.main = 1.4, cex.lab = 1.3)

curve(dexp(x, rate = 0.5), col = "red", -1, 10,
lwd = 2, main = expression(paste(beta, " =", 0.5)),
cex.main = 1.4, cex.lab = 1.3)
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Figure 18: The exponential distribution for different choices of the parameter. It is evident
that the random variable takes only positive values, and the distribution is positive
skewed.

Now suppose that we draw a random sample of size n from the exponential distribution with
B = 1. The mean of the distribution is S. The sample mean %Z?:l X, = X,, can be well
approximated by the normal distribution. In the following, we see that the histograms are bell

shaped for large n values.
par (mfrow = c(2,3))

beta = 1
n_vals = c(5, 10, 20, 50, 100, 500) # sample size

402



10

11

12

13

14

15

16

M = 1000

for(n in n_vals){
sample_means =
for(i in 1:M){

rexp(n = n, rate =

numeric(length = M)

1/beta)
sum(x)/n

X =
sample_means[i] =

}

hist(sample_means, probability = TRUE, main

xlab =
cex.main = 1.3)
curve(dnorm(x, mean =

add = TRUE, col =

}
n=5 n= 10
2 o 2
= ) = ©
@ o @ g
() ()
0O o 0O o
=2 e e e e e S T T 1
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Figure 19: As the sample size increases, the sample mean is well approximated by the normal
distribution. Note the mean of the normal distribution is at § = 1. The reader
is encouraged to identify the variance of the normal distribution using which the
histograms have been approximated.

Nonlinear Regression Models

In the investigations of natural processes, many times we come across nonlinear relationships
between the response and the predictors. We have already discussed some aspects of linear
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regression using R particularly the use of the function 1m() in R. This function is particularly
useful for the linear models or nonlinear models which can be converted to a linear model.
However, there are many models that cannot be written as a linear function of the parameters.
In such a case, nonlinear regression modelling is required. In R the nls() function takes care
of the estimation of parameters for nonlinear function.

To investigate the nonlinear regression concepts in the context of ecological models, we first
describe a phenomenon known as the Allee effect. The Allee effect, named after ecologist W.
C. Allee, corresponds to density-mediated drop in the population fitness when they are small in
numbers (Allee, 1931; Dennis, 1989; Fowler and Baker, 1991; Stephens and Sutherland, 1999).
The harmful effects of inbreeding depression, mate limitation, predator satiation etc. reduce
fitness as the population size decreases. For such dynamics, the maximum fitness is achieved by
the species at an intermediate population size, unlike logistic or theta-logistic growth models.
Such observations usually correspond to the mechanisms giving rise to an Allee effect. In recent
decades, due to an increasing number of threatened and endangered species, the Allee effect has
received much attention from conservation biologists. The related theoretical consequences and
the empirical evidence have made the Allee effect an important component in both theoretical
and applied ecology. In general, there are two types of Allee effects are considered in the
natural populations across a variety of taxonomic groups, viz. component and demographic
Allee effect. The component Allee effect modifies some component of individual fitness with
the changes in population sizes or density. If the per capita growth rate is low at small density
but remains positive is called the weak demographic Allee effect. The strong Allee effect is
characterized by a threshold density below which the per capita growth rate is negative that
leads to extinction deterministically. The critical density is called the Allee threshold and
has significant importance in conservation biology (Hackney and McGraw, 2001), population
management (Myers et al., 1995; Liermann and Hilborn, 1997) and invasion control (Johnson
et al., 2006). There are a large number of studies available in the literature on the mathematical
modelling of the demographic Allee effect (see Table 3.1 Courchamp et al. (2008)).

A bit of mathematical quantities to measure the growth of populations would be helpful to
understand the context. If X (¢) represents the population size at time ¢, then, the derivative

of the population size with respect to t, that is d);gt) is called the absolute growth rate and

%d);gt) is called the per capita growth rate (PGR) at time t. Note the that the PGR has

dimension time . If rate of growth is bigger than zero, then the population grows and if it is
negative population decline.

Consider the following equation

CZ(:TX<§—1> (1—@), X(0) = X,.

The quantities A is the Allee threshold and K is the carrying capacity of the environment and
r is the intrinsic growth rate. The parameters A and K satisfy the inequality 0 < A < K.
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It is easy to see that if X, < A, then % < 0, that means the population declines and for

0< X, <K, % > 0, therefore, the population grows.

In the following we learn how to solve such differential equations using R. Then, we can
visualize various dynamics of the population with various initial population sizes X|,.

library(deSolve) # load the library

A =30 # Allee threshold

K = 80; # Carrying capacity
AlleeFun = function(t, state, param){ # Allee growth equation

with(as.list(c(state,param)),q{
dX = r*X*(X/A - 1)*(1 - X/K);

return(list(c(dX)));
b
b
parameters = c(r = 0.5, K = 80,A = 30) # parameters of the model
times = seq(0, 10, by = 0.01) # time frame
init.pop = 35 # initial population size

state = c(X = init.pop)
out = ode(y = state, times = times, func = AlleeFun,
parms = parameters) # solving the ODE

plot(out, main = "Solution of Allee growth equation",

ylim=c(10, 90), xlab = "time",

ylab = "population size", col = 2, lwd = 2,

cex.lab = 1.3)
abline(h = A, col = 6, 1lwd=2, lty=2) # horizontal line at A
abline(h = K, col = 8, 1lwd=2, 1lty=3) # horizontal line at K
text (0, 83, "K", lwd = 2)
text (0, 33, "A", lwd = 2)
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Solution of Allee growth equation
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Figure 20: The solution of the Allee growth equation. If the initial condition is above A, then
the solution converges to the carrying capacity.

We can consider multiple initial population size and see how the solution of the differential
equation behaves. The following code will show that if the initial population size is below
threshold A, the population goes to extinction and if the initial population size is above A,
the population eventually settles down at K.

init.pop = c(10, 20, 40, 50, 60, 100) # Different initial size
for(i in 1:length(init.pop)){
state = c(X = init.popl[il)
out = ode(y = state, times = times, func = AlleeFun,
parms = parameters)
if (i==1)
plot(out, main = "Solution of Allee growth equation",
ylim=c(0, 100), xlab = "time",
ylab = "population size", col = i, lwd = 2,
cex.lab = 1.3)
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else
lines(out, col = i, lwd = 2)
}
abline(h = A, col 6, lwd=2, 1lty=2)
abline(h = K, col = 8, lwd=2, 1ty=3)
text(0, 83, "K", lwd = 2)
text (0, 33, "A", lwd = 2)

Solution of Allee growth equation
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Figure 21: Solution of the differential equation representing the Allee growth profiles of the
natural populations. If the initial population size is below the Allee threshold, the
population size eventually extinct, whereas if the population growth starts with a
population size bigger than A, the population settles down at K eventually.

Fitting of the Allee growth equations

Before going into fitting exercises, we shall learn how to simulate the population dynamics from
the model populations. Suppose that we want to simulate the population dynamics of a pop-
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ulation governed by the Allee growth equation and the population is subject to demographic
stochasticity alone.

First, we fix the parameters for the simulations. We simulation the initial population size
X, ~ N(25,3%) and the simulate the per capita growth from r, ~ N (u,,o%dt), where u, =
r (% — 1) (1 — %) Then we simulate X; ~ Xye™+%. The process is continued till the end
time point. In the following code, we first fix the parameters:

r = 0.05 true parameter value r
A =20 Allee threshold
K = 100 Carrying capacity

time = seq(0, 10, by = 0.05)
dt = time[2] - time[1]

sig_e = 0.1

par (mfrow = c(1,2))

time points
time difference

H OH HF H H H

environmental standard deviation

In the following code, we perform a single simulation of the population dynamics.

popSim = numeric(length = length(time))
x0 = rnorm(n = 1, mean = 30, sd = 3)
popSim[1] = %0
for (i in 1:(length(time)-1)) {
mu = r*(popSim[i]/A - 1)*(1- popSim[i]/K)
pgr = rnorm(n = 1, mean = mu, sd = sig_ex*sqrt(dt))
popSim[i+1] = popSim[i]*exp (pgr)
}
plot(time, popSim, col = "red", lwd = 2, type = "1",
xlab = "time", ylab = "Population size", cex.lab = 1.3)
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Figure 22: A single simulated trajectory of the population size subject to Allee effect. As the
envrionmental variance o2 increases, the simulations will be more wild in nature.
The reader is encouraged to do this experimentation using different values of o2

and also experiment with different values of K and A and z.

In the following we perform 50 simulations and obtain 50 possible population trajectories.

nsim = 50

length(time))
length(time))

popSim = matrix(data
popSim = matrix(data
for(i in 1:nsim){
x0 = rnorm(n = 1, mean = 25, sd = 5)
popSim[i,1] = x0
for (j in 1:(length(time)-1)) {
mu = r*(popSim[i,jl/A - 1)*(1- popSim[i,j]/K)
pgr = rnorm(n = 1, mean = mu, sd = sig_exsqrt(dt))
popSim[i, j+1] = popSim[i, j]l*exp(pgr)

NA, nrow = nsim, ncol

NA, nrow nsim, ncol

}

}
matplot(time, t(popSim), type = "1", 1ty = 1,
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Figure 23: We consider several initial population sizes and simulate 50 trajectories of the pop-
ulation dynamics. It is to be noted that if the initial population size is below the
Allee threshold, the population is likely to go extinct. Therefore, some trajectories
lead to extinction of the population.

Now we concentrate on the fitting of the Allee growth equation to the real data set. Suppose
that the following data has been collected from the field of some species populations.

29, 30, 31, 32, 34, 37, 40, 42, 43, 45, 52, 59, 61, 54, 58, 63, 65, 71, 74, 75, 77, 82, 83, 89, 91,
97, 95, 105, 97, 102, 104, 99, 101, 95, 100, 97, 98, 100, 102, 98, 97

First, we store these data values in an object x using the concatenation operator ¢ and then
plot both size profile and time per capita growth profile of the population. We estimate the
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par (mfrow = c(1,2))

x = c(29, 30, 31, 32, 34, 37, 40, 42, 43, 45, 52, 59, 61, 54, 58, 63,
65, 71, 74, 75, 77, 82, 83, 89, 91, 97, 95, 105, 97, 102, 104,
99, 101, 95, 100, 97, 98, 100, 102, 98, 97)

plot(x, type = "b", pch = 19, col = "red",

xlab = "Years", ylab = "Population size", cex.lab = 1.2)
n = length(x) # length of the data
R = log(x[2:n]/x[1:(n-1)]) # Per capita growth rate

plot(x[1:(n-1)]1, R, xlim = c(0, 120), col = "grey",
ylab = "PGR", xlab = "Population size", pch = 19,
cex.lab = 1.2)
abline(h = 0, col = "red", lwd = 2) # adding horizontal line

nls fit = nls(R ~ rx(x[1:(n-1)]1/A-1)*(1-x[1:(n-1)]1/K),
start = list(r = 0.04, A= 20,K=90))
summary (nls_fit) # summary of the nls

Formula: R ~ r * (x[1:(n - DI/A - 1) * (1 - x[1:(n - 1D]I/K)

Parameters:
Estimate Std. Error t value Pr(>|t])
r 0.01018 0.06629 0.154 0.879
A 3.83204 22.88810 0.167 0.868
K 98.61951 4.36712 22.582 <2e-16 *x*x

Signif. codes: O 'x*xkx' 0.001 '**x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.04698 on 37 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 4.522e-08

r_hat = coefficients(nls_fit) [1] # estimate of r
A _hat = coefficients(nls_fit) [2] estimate of A
K_hat = coefficients(nls_fit) [3] # estimate of K

+*

curve(r_hat*(x/A_hat-1)*(1-x/K_hat), add = TRUE,
col = "blue", lwd = 2) # adding fitted curve
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Figure 24: The left panel depicts the population size over time. The right panel is the per
capita growth profile with respect to population size.

Similar to the linear regression, nonlinear regression models can also be compared. Suppose
that the same per capita growth profile is also analysed using the logistic growth equation.
The logistic growth equation is given by

dX X

where, r,, is the intrinsic growth rate (also referred to as the maximum per capita growth rate)
and K is the carrying capacity of the environment. Add the following code snippet below the
previous code snippet.

Here, the per capita growth profile of the logistic growth equation is a linear function of the

population size r,, (1 — %) which can be written in the form a + bX, where a = r,, and
= —%. Therefore, we can apply linear regression model to perform this fitting exercise,

however, we apply the n1s() function only to get the estimates of r,, and K as given below.
Therefore, n1s () function can also be used to perform linear regression.

plot(x[1:(n-1)], R, xlim = c(0, 120), col = "grey",
ylab = "PGR", xlab = "Population size", pch = 19,
cex.lab = 1.2)

abline(h = 0, col = "red", lwd = 2) # adding horizontal line
curve(r_hat*(x/A_hat-1)*(1-x/K_hat), add = TRUE,
col = "blue", lwd = 2) # adding fitted curve

nls_fit_log = nls(R ~ r_mx(1-x[1:(n-1)]1/K),
start = list(r_m = 0.04, K=90)) # fitting of logistic
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rm_hat = coefficients(nls_fit_log) [1] # estimate of rm

K_hat = coefficients(nls_fit_log) [2] # estimate of K
curve (rm_hat*(1-x/K_hat), add = TRUE,
col = "magenta", lwd = 2) # add fitted curve

legend ("bottomleft", legend = c("Allee growth", "Logistic"),
col = c("blue", "magenta"), lwd = c(2,2),
bty = "n", cex = c(0.8, 0.8)) # add legend to plot

0.10 0.15

PGR
0.00 0.05

—— Allee growth
—— Logistic
I I I I I I I

0 20 40 60 80 100 120

-0.10

Population size

Figure 25: The fitted logistic growth and the Allee growth equations are shown in this plot.
Both these equations are fitted using the nonliear regression model.

In the following, we compare the curve fitting exercises. One way to look at the actual versus
predicted values and a high correlation between them gives indication of a better fitting. In
the following, we plot the actual and fitted per capita growth rates obtained by Allee growth
equation and the logistic growth equation. We also compute the corresponding correlations.

par(mfrow = c(1,2))

plot(R, fitted.values(nls_fit), pch = 19, col = "grey",
xlab = "Observed PGR", ylab = "Fitted PGR", cex.lab = 1.2,
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main = "Allee growth equation")
cor(R, fitted.values(nls_fit)) # correlation value

[1] 0.5125905

abline(Im(fitted.values(nls_fit) ~R), col = "red", lwd = 2)
plot(R, fitted.values(nls_fit_log), pch = 19, col = "grey",
xlab = "Observed PGR", ylab = "Fitted PGR", cex.lab = 1.2,

main = "Logistic growth equation") # R versus fitted values
abline(lm(fitted.values(nls_fit_log) ~R), col = "red", lwd = 2)
cor (R, fitted.values(nls_fit_log)) # correlation value

[1] 0.4515992

Allee growth equation Logistic growth equation
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Figure 26: We expect the data points to be close to the red line to give a strong correlation

between the actual versus the fitted values of the per capita growth rate.

For the Allee and logistic growth model fitting, the correlation between the observed per
capita growth rate and predicted per capita growth rates are 0.51 and 0.45, respectively,
which shows approximately 50% agreement. Using the AIC function, we also compute the

Akaike Information Criterion to compare these two fitting exercises.
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ATIC(nls_fit)

[1] -126.2541

AIC(nls_fit_log)

[1] -125.1844

The difference between the AIC values is less than 5, therefore, these two models perform
almost in a similar way.

Till now, in our discussion, we have considered the all the data points. It is important to
note that one data point always lie away from the mass of the per capita growth rate values.
In the scatterplot of actual versus fitted values, in the top left corner of the window, a data
point is observed. As a practitioner, presence of such points needs to be considered and take
appropriate action. This will be an exercise for the participants to redo the above exercises
by fitting exercises without this stipulated point which is suspected to be an outlier.

Bootstrapping regression model

Bootstrapping is a powerful resampling technique which helps in evaluating the goodness of
the fitting exercises. In the bootstrapping process, we create a new data set from the original
data set. We have the data set which contains the first column as the population size and the
second column as the per capita growth rates at those population sizes. If there are n rows in
the data, we randomly select n rows from the data following the principle of simple random
sampling with replacement (SRSWR) and create a new data set with those selected rows. It
is understood that in the new data set some rows may be repeated (due to SRSWR). The
new data set is called the bootstrap data set. We create B = 1000 bootstrap data sets from
the original data set. We perform the fitting exercise on each of the bootstrap data sets and
record the estimates of the parameters. The histogram of the B many estimates constitute
the bootstrap sampling distribution of the estimators of the parameters. We carry out this
exercise for the logistic growth model using the above data set.

B = 1000 # number of bootstrap samples
rm_hat = numeric(B) # bootstrap estimate of rm
K_hat = numeric(B) # bootstrap estimate of K

D = data.frame(R = R, x = x[1:(n-1)]) # original data

for(i in 1:B){
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ind = sample(l:nrow(D), replace = TRUE) # SRSWR
nls_fit_boot = nls(R ~ r_m*x(1-x/K), data = D[ind,],
start = list(r m = 0.1, K = 80))

rm_hat[i] = coefficients(nls_fit_boot) [1] # bootstrap estimate
K _ hat[i] = coefficients(nls _fit boot) [2] # bootstrap estimate
}
par (mfrow = c(1,2))
hist(rm_hat, probability = TRUE, main = "",
xlab = expression(widehat(r[m])), breaks = 30)
hist(K_hat, probability = TRUE, main = "",

xlab = expression(widehat(K)), breaks = 30)
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Figure 27: The bootstrap sampling distribution of the nonlinear least squares estimators of the
parameters for the logistic growth equation. The number of bootstrap data set is
1000. Indication of skewed distribution for K depicts a significant impact of some
outlying observations.

The reader is encouraged to update the above code and compute the AIC values for each of
the bootstrap fitting. If the bootstrap distribution of the AIC values is wide, which indicates
the sensitivity of the fitting on the individual data points.
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Some more concepts in Model selection

Let us get back to our data analysis task once again. We tried to predict the volume of the
timber using the Girth variable as the predictor. In fact, we ended up with two regression
models one is linear, and the other one is quadratic. We can predict the volume for some
diameter of a tree for whom the volume is not available. A natural question arises, how would
we validate the predictions, that is, how close the predictions to the true volume of the timer?
One may argue that future is always unknown, therefore, there is no chance to check the
goodness of the predictions. Or in other words, we need to rely completely on the model that
is built on the whole data set (here there are 31 rows).

Training and test set

We may think of having a better strategy. Our whole data set consists of 31 rows, and we
can keep about 20% of the rows aside (about 6 rows) and build the models on rest 80% of the
rows. In the data science literature, the bigger set (80%) on which the model fitting exercises
are carried out, is called the training data. The smaller set is referred to as the test data. The
fitted model is used to predict the volume of timber using the girth values in the test data.
It is important to note that the predicted values on the test data can now be assessed how
close they are to the actual response values. The selection of the training data (rows) is done
randomly, that is, randomly 25 rows are selected out of the 31 rows and create a training data
consisting of the selected 25 rows and we create another data set with remaining 6 rows. In
this new setting we minimize the following sum of squares and obtain the estimates of the
parameters by, b; and o

25

Z (Volume; — by — by X Girthz)2 :

i—1
And we predict the volume on the test data using Volume,; = by+b; x Girth,;, where ¢ represents
the rows in the data which belongs to the test set. The test set contains six observations.
Therefore, we have six predictions of the volume. The accuracy of the predictions is assessed
by the mean squared error as follows:

1 — 2
5 (Volumei — Volumei)

i—1
The above quantity gives an idea how good the predictions are and also referred to as test
mean squared error (mse). In fact, this can be used to compare the prediction accuracy for two
different models. The same exercise can be carried out for the quadratic regression model as
well. If the prediction accuracy for the quadratic regression is more than the linear regression

model, one may prefer to utilize the quadratic equation for the prediction purpose. Performing
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the train-test procedure is essentially to provide a greater confidence level that the fitted model
expected to perform well on the future observation.

Let us execute the above task and check the predictive accuracy of the linear and quadratic
regression model to predict the volume of the timber using the diameter. The following R
code will do this task. We will use the sample function to select 25 rows randomly out of 31
rows in the data set.

data(trees)
train = sample(l:nrow(trees), size = floor(nrow(trees)*0.8))
train_trees = trees[train, ] # training data

**

print(train)
test_trees = trees[-train, ] # test data
train_fit = 1m(Volume ~ Girth, data = train_trees)
train_fit2 = Im(Volume ~ Girth + I(Girth~2),

data = train_trees)
predict_fit = predict(train_fit, newdata = test_trees)
predict_fit2 = predict(train_fit2, newdata = test_trees)

training rows

mean ((predict_fit - test_trees$Volume) ~2) # test mse linear

mean((predict_fit2 - test_trees$Volume) "2) # test mse quadratic

The reader is encouraged to run above code snippet multiple times and observe the test mean
squared error values change in different runs. This is due to the random selection of the rows.
Using the print (train) you can check which rows are being selected in the training data.

To come to an objective conclusion, we should not deal with such type of randomness, and
we seek to get a measure that takes care of this randomness. The test mean squared error is
a random quantity. We may seek to compute the average test mean squared error. The idea
is that we perform the train test process a large number of times (M, say) and every time
compute the test mean squared error and compute the average error. The quadratic model
will be preferred if the average test mean squared error is less than the average test mean
squared error for the simple linear regression model. Let us do this task below and compute
the average test mean squared error for both the models.

M = 500 # number of repetitions
test_mse_fit = numeric(length = M) # store test mse linear
test_mse_fit2 = numeric(length = M) # store test mse quadratic

for(i in 1:M){
train = sample(l:nrow(trees), size = floor(nrow(trees)*0.8))
train_trees = trees[train, ] # training data
test_trees = trees[-train, ] # test data
train_fit = 1m(Volume ~ Girth, data = train_trees)
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train_fit2 = Im(Volume ~ Girth + I(Girth~2),
data = train_trees)
predict_fit = predict(train_fit, newdata = test_trees)
predict_fit2 = predict(train_fit2, newdata = test_trees)
test_mse_fit[i] = mean((predict_fit - test_trees$Volume) 2)
test_mse_fit2[i] = mean((predict_fit2 - test_trees$Volume) "2)
+

par (mfrow = c(1,2)) # two plots side by side
hist(test_mse_fit, probability = TRUE,

main = "Linear Regresion", breaks = 30,

xlab = "test mse", cex.lab = 1.3) # distribution of test mse
points(mean(test_mse_fit), 0, pch = 19,

col = "red", cex = 1.3) # average test mse

hist(test_mse_fit2, probability = TRUE,

main = "Quadratic Regression", breaks = 30,

xlab = "test mse", cex.lab = 1.3)
points(mean(test_mse_fit2), 0, pch = 19,

col = "red", cex = 1.3)
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Figure 28: The variation in the test mean squared error in the train-test validation exercises is
shown using histograms. The average test mean squared error is shown using red
dot. The performance of the quadratic equation is better in predicting the future
observations.
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One may argue that by this process it is not guaranteed that all the individual data points
has been used as a training point or as test point. Therefore, still some dependence on the
individual data points remained. One way to deal with it to ensure that every row in the data
set is a part of both training and test data. Suppose consider the first row as the test data
and rest 30 rows as training data. Based on the fitted model we obtain the prediction for the

— 2
first row and compute (Volumel — Volumel) . The same process is carried out by removing

S 2

the second row and compute (\Rﬂurne2——\&ﬂurneg) and continue this process till the 31°°
row. Basically, each data point is used as both training and test data point and this process is
known as Leave One Out Cross Validation (LOOCV). The LOOCYV error is computed as:
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The model with the lesser LOOCYV error may be preferred as the prediction equation for the
given data analysis problem. In the following, let us compute the LOOCYV error for both
simple linear regression and quadratic regression model.

test_mse_fit = numeric(length = nrow(trees))
test_mse_fit2 = numeric(length = nrow(trees))
for(i in 1:nrow(trees)){
train_trees = trees[-i, ] # drop ith the row
test_trees = trees[i, ] # ith row in test
train_fit = 1m(Volume ~ Girth, data = train_trees)
train_fit2 = 1m(Volume ~ Girth + I(Girth~2),
data = train_trees)
predict_fit = predict(train_fit, newdata = test_trees)
predict_fit2 = predict(train_fit2, newdata = test_trees)
test_mse_fit[i] = (predict_fit - test_trees$Volume) 2
test_mse_fit2[i] = (predict_fit2 - test_trees$Volume) 2

cat("The LOOCV error of the linear regression model\n")

The LOOCV error of the linear regression model

mean(test_mse_fit) # LOOCV linear regression

[1] 20.5653

420



cat("The LOOCV error of the quadratic regression model\n")

The LOOCV error of the quadratic regression model

mean(test_mse_fit2) # LOOCV quadratic regression

[1] 11.93375

The output of the above code gave the LOOCV estimate of the prediction error (test mean
squared error) 20.5652 and 11.93375 for the linear and quadratic regression, respectively.
Therefore, by using the leave one out cross validation, one may choose to go ahead with the
quadratic regression model to predict the volume of the timber as a function of tree diameter.
The reader is encouraged to implement the above piece of code for the model

Volume = b, + b; x Girth + by x Height + €.

An important I would like to stress here that, whenever we run a regression model (here using
the 1m() function), many matrix multiplications take place at the background and there is
computational task involved it. Sometimes, depending on the implementation of the algorithm,
it may take longer time to run the codes. We observed that for implementation of the LOOCV,
we had to execute the 1m() function code 31 times, or in general, it is the number of rows
in the data. Imagine that if there were 10° rows in the data with several predictors, running
the code several times, would be extremely difficult task. Therefore, LOOCV may not always
computationally handy.

Therefore, we need to devise some mechanism, by which we need to implement a smaller
number of runs like train-test process and at the same time we can ensure that all the data
points are ensured to be the part of both set of training and test observations. The method,
called, K-fold validation ease this task. Suppose that we have data set with 100 rows, and
we want to implement a five-fold cross validation. In this process, we divide the data into
five approximately equal segments. Before writing the codes, we keep a note of the following
points:

e LOOCV is a special case of the k-fold cross validation, where k is chosen to be equal to
the number of observations.

o LOOCV is time consuming due the number of experiments performed, if the dataset is
large enough.

e With k-fold cross-validation, the computation time is reduced due to the number of
experiments performed is less as well as the all the observations are eventually used to
train and test the model.
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Similar to the LOOCV, one can write a simple for loop to execute the task. However, we
will use a simple but useful package in R. We will use the caret package to complete this
task. The function train() in the caret package offers several options for model training. In
the trainConrol option, we specify the number of folds.

#install.packages("caret", dependencies = TRUE)
library(caret) # load the library

Loading required package: ggplot2

Loading required package: lattice

out = train(Volume ~ Girth, data = trees,

method = "1m",

trControl = trainControl (method = "cv",
print (out$results([2]) # RMSE

number = 5))

RMSE
1 4.495616

out2 = train(Volume ~ Girth + I(Girth~2), data = trees,

method = "1m",

trControl = trainControl(method = "cv", number = 5))
print (out2$results[2]) # RMSE

RMSE
1 3.512168

From the output it is found that the 5-fold cross validation root mean squared errors are
4.45317 and 3.264002 for the linear and quadratic regression, respectively. Therefore, by using
the K-fold cross validation, we consider the quadratic regression model as a better predictive
model for the volume of timber. We would like to emphasize that the choice of the folds is
randomly done. Therefore, if we run the above code once again, the values might be changed.
Therefore, we may repeat this process a certain number of times and report the average K-
fold cross validation error and corresponding standard error value. This can be carried out by
fixing the repeats option in the trainControl argument. In the following, we just provide
the updated code:
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out = train(Volume ~ Girth, data = trees,
method = "1m",

trControl = trainControl(method = "repeatedcv",
number = 5, repeats = 100))
print (out$results[2]) # linear regression

RMSE
1 4.403799

cat("The estimated RMSE is ", as.numeric(out$results[2]),
" with standard error ", as.numeric(out$results[5]))

The estimated RMSE is 4.403799 with standard error 1.093214

out2 = train(Volume ~ Girth + I(Girth~2), data = trees,
method = "1m",

trControl = trainControl(method = "repeatedcv",
number = 5, repeats = 100))
print (out$results[2]) # quadratic regression
RMSE
1 4.403799
cat("The estimated RMSE is ", as.numeric(out2$results([2]),
" with standard error ", as.numeric(out2$results([5]))

The estimated RMSE is 3.416458 with standard error 0.7015495
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